Earth Science Studies

NASA Selects Missions to Study Our Sun, Its Effects on Space Weather

Posted on Updated on

Grey Hautaluoma / Karen Fox
NASA Headquarters, Washington
grey.hautaluoma-1@nasa.gov / karen.c.fox@nasa.gov

 

A constant outflow of solar material streams out from the Sun, depicted here in an artist’s rendering. On June 20, 2019, NASA selected two new missions – the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission and Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) – to study the origins of this solar wind and how it affects Earth. Together, the missions support NASA’s mandate to protect astronauts and technology in space from such radiation. Credits: NASA


NASA has selected two new missions to advance our understanding of the Sun and its dynamic effects on space. One of the selected missions will study how the Sun drives particles and energy into the solar system and a second will study Earth’s response.

The Sun generates a vast outpouring of solar particles known as the solar wind, which can create a dynamic system of radiation in space called space weather. Near Earth, where such particles interact with our planet’s magnetic field, the space weather system can lead to profound impacts on human interests, such as astronauts’ safety, radio communications, GPS signals, and utility grids on the ground. The more we understand what drives space weather and its interaction with the Earth and lunar systems, the more we can mitigate its effects – including safeguarding astronauts and technology crucial to NASA’s Artemis program to the Moon.

 

Read the rest of this entry »

OCO-3 Ready to Extend NASA’s Study of Carbon

Posted on Updated on

 Written by Jane Platt
 Jet Propulsion Laboratory, Pasadena, California

 

OCO-3 sits on the large vibration table (known as the “shaker”) in the Environmental Test Lab at the Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

 

When the Orbiting Carbon Observatory 3, OCO-3, heads to the International Space Station, it will bring a new view – literally – to studies of Earth’s carbon cycle.

From its perch on the space station, OCO-3 will observe near-global measurements of carbon dioxide on land and sea, from just after sunrise to just before sunset. That makes it far more versatile and powerful than its predecessior, OCO-2.

 

Read the rest of this entry »

Antarctica’s Effect on Sea Level Rise in Coming Centuries

Posted on Updated on

Esprit Smith

Jet Propulsion Laboratory, Pasadena, Calif.

  

 

Thwaites Glacier. animation shows projections of ice sheet retreat in Antarctica Thwaites Glacier. Credit: NASA/James Yungel

 

 

There are two primary causes of global mean sea level rise – added water from melting ice sheets and glaciers, and the expansion of sea water as it warms. The melting of Antarctica’s ice sheet is currently responsible for 20-25 percent of global sea level rise.

 

But how much of a role will it play hundreds of years in the future?


 

Read the rest of this entry »

2018 Fourth Warmest Year in Continued Warming Trend, According to NASA, NOAA

Posted on Updated on

 

In 2018, the temperature was 1.5 degrees Fahrenheit warmer than the average from 1951 to 1980. (Animated GIF) Credit: NASA Goddard Space Flight Center

 

Ahead of tomorrow’s press teleconference on climate change and global warming, NASA just released its 2018 statistics on temperature readings worldwide.

 

Earth’s global surface temperatures were the fourth warmest since 1880, according to independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).

 

Read the rest of this entry »

NASA, NOAA to Announce 2018 Global Temperatures, Climate Conditions

Posted on Updated on

Media Advisory: M19-003
NASA, NOAA to Announce 2018 Global Temperatures, Climate Conditions

 

2017_Worldwide_Temperature_Map.jpg
NASA and NOAA are two keepers of the world’s temperature data and independently produce a record of Earth’s surface temperatures and changes. Shown here are 2017 global temperature data: higher than normal temperatures are shown in red, lower than normal temperatures are shown in blue. Credits: NASA’s Scientific Visualization Studio

 

Climate experts from NASA and the National Oceanic and Atmospheric Administration (NOAA) will provide the annual release of global temperatures data and discuss the most important climate trends of 2018 during a media teleconference at 11:30 a.m. EST Wednesday, Feb. 6.

 

Read the rest of this entry »

GRACE Mission: 15 Years of Watching Water on Earth

Posted on Updated on

Written by Carol Rasmussen
NASA Earth Science News Team


Artists_concept_of_the_Gravity_Recovery_and_Climate_Experiment_GRACE_from_December_2002.jpg
Artists concept of the Gravity Recovery and Climate Experiment GRACE from December 2002


Fast Facts

  • In 15 years of operations, the GRACE satellite mission has revolutionized our view of how water moves and is stored on Earth.
  • GRACE measures changes in the local pull of gravity as water shifts around Earth due to changing seasons, weather and climate processes.
  • Among other innovations, GRACE gave us the first space-based view of water beneath Earth’s surface, giving insight into where aquifers may be shrinking or dry soils contributing to drought.
  • The GRACE Follow-On mission, launching in early 2018, will extend GRACE’s innovative measurements

 

“Revolutionary” is a word you hear often when people talk about the GRACE mission. Since the twin satellites of the U.S./German Gravity Recovery and Climate Experiment  launched on March 17, 2002, their data have transformed scientists’ view of how water moves and is stored around the planet.

“With GRACE, we effectively created a new field of spaceborne remote sensing: tracking the movement of water via its mass,” said Michael Watkins, the original GRACE project scientist and now director of NASA’s Jet Propulsion Laboratory, Pasadena, California.

Read the rest of this entry »

NASA Satellite Finds Unreported Source of Toxic Air Pollution

Posted on Updated on

 

Human-made sulfur dioxide emissions from a medium-size power plant
New research has detected smaller sulfur dioxide concentrations and sources around the world, including human-made sources such as medium-size power plants and oil-related activities.
Credit: EPA
 
Data from NASA’s Aura spacecraft, illustrated here, were analyzed by scientists to produce improved estimates of sulfur dioxide sources and concentrations worldwide between 2005 and 2014.

Credit: NASA

Using a new satellite-based method, scientists at NASA, Environment and Climate Change Canada, and two universities have located 39 unreported and major human-made sources of toxic sulfur dioxide emissions.

A known health hazard and contributor to acid rain, sulfur dioxide (SO2) is one of six air pollutants regulated by the U.S. Environmental Protection Agency. Current, sulfur dioxide monitoring activities include the use of emission inventories that are derived from ground-based measurements and factors, such as fuel usage. The inventories are used to evaluate regulatory policies for air quality improvements and to anticipate future emission scenarios that may occur with economic and population growth.

But, to develop comprehensive and accurate inventories, industries, government agencies and scientists first must know the location of pollution sources.

“We now have an independent measurement of these emission sources that does not rely on what was known or thought known,” said Chris McLinden, an atmospheric scientist with Environment and Climate Change Canada in Toronto and lead author of the study published this week in Nature Geosciences. 

“When you look at a satellite picture of sulfur dioxide, you end up with it appearing as hotspots – bull’s-eyes, in effect — which makes the estimates of emissions easier.”

The 39 unreported emission sources, found in the analysis of satellite data from 2005 to 2014, are clusters of coal-burning power plants, smelters, oil and gas operations found notably in the Middle East, but also in Mexico and parts of Russia. In addition, reported emissions from known sources in these regions were — in some cases — two to three times lower than satellite-based estimates. 

Altogether, the unreported and underreported sources account for about 12 percent of all human-made emissions of sulfur dioxide – a discrepancy that can have a large impact on regional air quality, said McLinden.

The research team also located 75 natural sources of sulfur dioxide — non-erupting volcanoes slowly leaking the toxic gas throughout the year. While not necessarily unknown, many volcanoes are in remote locations and not monitored, so this satellite-based data set is the first to provide regular annual information on these passive volcanic emissions.

“Quantifying the sulfur dioxide bull’s-eyes is a two-step process that would not have been possible without two innovations in working with the satellite data,” said co-author Nickolay Krotkov, an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

First was an improvement in the computer processing that transforms raw satellite observations from the Dutch-Finnish Ozone Monitoring Instrument aboard NASA’s Aura spacecraft into precise estimates of sulfur dioxide concentrations. Krotkov and his team now are able to more accurately detect smaller sulfur dioxide concentrations, including those emitted by human-made sources such as oil-related activities and medium-size power plants. 

Being able to detect smaller concentrations led to the second innovation. McLinden and his colleagues used a new computer program to more precisely detect sulfur dioxide that had been dispersed and diluted by winds. They then used accurate estimates of wind strength and direction derived from a satellite data-driven model to trace the pollutant back to the location of the source, and also to estimate how much sulfur dioxide was emitted from the smoke stack.

“The unique advantage of satellite data is spatial coverage,” said Bryan Duncan, an atmospheric scientist at Goddard. 

“This paper is the perfect demonstration of how new and improved satellite datasets, coupled with new and improved data analysis techniques, allow us to identify even smaller pollutant sources and to quantify these emissions over the globe.”

The University of Maryland, College Park, and Dalhousie University in Halifax, Nova Scotia, contributed to this study.

For more information about, and access to, NASA’s air quality data, visit: http://so2.gsfc.nasa.gov/

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing. 

For more information about NASA Earth science research, visit: http://www.nasa.gov/earth

NASA Study Solves Two Mysteries About Wobbling Earth

Posted on Updated on

 

Earth does not always spin on an axis running through its poles. Instead, it wobbles irregularly over time, drifting toward North America throughout most of the 20th Century (green arrow). That direction has changed drastically due to changes in water mass on Earth. Credit: NASA/JPL-Caltech


Using
satellite data on how water moves around Earth, NASA scientists have solved two mysteries about wobbles in the planet’s rotation — one new and one more than a century old. The research may help improve our knowledge of past and future climate. 

Although a desktop globe always spins smoothly around the axis running through its north and south poles, a real planet wobbles. Earth’s spin axis drifts slowly around the poles; the farthest away it has wobbled since observations began is 37 feet (12 meters). These wobbles don’t affect our daily life, but they must be taken into account to get accurate results from GPS, Earth-observing satellites and observatories on the ground. 

In a paper ‘Climate–Driven Polar Motion: 2003–2015 (PDF)‘ published today in Science Advances, Surendra Adhikari and Erik Ivins of NASA’s Jet Propulsion Laboratory, Pasadena, California, researched how the movement of water around the world contributes to Earth’s rotational wobbles. Earlier studies have pinpointed many connections between processes on Earth’s surface or interior and our planet’s wandering ways. For example, Earth’s mantle is still readjusting to the loss of ice on North America after the last ice age, and the reduced mass beneath that continent pulls the spin axis toward Canada at the rate of a few inches each year. But some motions are still puzzling.


A Sharp Turn To The East

Before about 2000, Earth’s spin axis was drifting toward Canada (green arrow, left globe). JPL scientists calculated the effect of changes in water mass in different regions (center globe) in pulling the direction of drift eastward and speeding the rate (right globe). Credit: NASA/JPL-Caltech

Around the year 2000, Earth’s spin axis took an abrupt turn toward the east and is now drifting almost twice as fast as before, at a rate of almost 7 inches (17 centimeters) a year. “It’s no longer moving toward Hudson Bay, but instead toward the British Isles,” said Adhikari. “That’s a massive swing.” Adhikari and Ivins set out to explain this unexpected change.

Scientists have suggested that the loss of mass from Greenland and Antarctica’s rapidly melting ice sheet could be causing the eastward shift of the spin axis. The JPL scientists assessed this idea using observations from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) satellites, which provide a monthly record of changes in mass around Earth. Those changes are largely caused by movements of water through everyday processes such as accumulating snowpack and groundwater depletion. They calculated how much mass was involved in water cycling between Earth’s land areas and its oceans from 2003 to 2015, and the extent to which the mass losses and gains pulled and pushed on the spin axis.

Adhikari and Ivins’ calculations showed that the changes in Greenland alone do not generate the gigantic amount of energy needed to pull the spin axis as far as it has shifted. In the Southern Hemisphere, ice mass loss from West Antarctica is pulling, and ice mass gain in East Antarctica is pushing, Earth’s spin axis in the same direction that Greenland is pulling it from the north, but the combined effect is still not enough to explain the speedup and new direction. Something east of Greenland has to be exerting an additional pull.

The researchers found the answer in Eurasia. 

“The bulk of the answer is a deficit of water in Eurasia: the Indian subcontinent and the Caspian Sea area,” Adhikari said. 

The finding was a surprise. This region has lost water mass due to depletion of aquifers and drought, but the loss is nowhere near as great as the change in the ice sheets. 

So why did the smaller loss have such a strong effect? The researchers say:

“It’s because the spin axis is very sensitive to changes occurring around 45 degrees latitude, both north and south. “This is well explained in the theory of rotating objects,” Adhikari explained. “That’s why changes in the Indian subcontinent, for example, are so important.””


New Insight on an Old Wobble
In the process of solving this recent mystery, the researchers unexpectedly came up with a promising new solution to a very old

The relationship between continental water mass and the east-west wobble in Earth’s spin axis. Losses of water from Eurasia correspond to eastward swings in the general direction of the spin axis (top), and Eurasian gains push the spin axis westward (bottom). Credit: NASA/JPL-Caltech

problem, as well. One particular wobble in Earth’s rotation has perplexed scientists since observations began in 1899. Every six to 14 years, the spin axis wobbles about 20 to 60 inches (0.5 to 1.5 meters) either east or west of its general direction of drift. “Despite tremendous theoretical and modeling efforts, no plausible mechanism has been put forward that could explain this enigmatic oscillation,” Adhikari said.

Lining up a graph of the east-west wobble during the period when GRACE data were available against a graph of changes in continental water storage for the same period, the JPL scientists spotted a startling similarity between the two. Changes in polar ice appeared to have no relationship to the wobble — only changes in water on land. Dry years in Eurasia, for example, corresponded to eastward swings, while wet years corresponded to westward swings.

When the researchers input the GRACE observations on changes in land water mass from April 2002 to March 2015 into classic physics equations that predict pole positions, they found that the results matched the observed east-west wobble very closely. “This is much more than a simple correlation,” coauthor Ivins said. “We have isolated the cause.”

The discovery raises the possibility that the 115-year record of east-west wobbles in Earth’s spin axis may, in fact, be a remarkably good record of changes in land water storage. “That could tell us something about past climate — whether the intensity of drought or wetness has amplified over time, and in which locations,” said Adhikari. 

“Historical records of polar motion are both globally comprehensive in their sensitivity and extraordinarily accurate,” said Ivins. “Our study shows that this legacy data set can be used to leverage vital information about changes in continental water storage and ice sheets over time.”

GRACE is a joint NASA mission with the German Aerospace Center (DLR) and the German Research Center for Geosciences (GFZ), in partnership with the University of Texas at Austin. For more information on the mission, visit: http://grace.jpl.nasa.gov or http://www.csr.utexas.edu/grace

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

New NASA Web Portal Shines Beacon on Rising Seas

Posted on Updated on

Fort Lauderdale, Florida, is at risk from rising sea levels. Credit: Dave/Flickr Creative Commons/CC BY 2.0

 

Sea level rise is a critical global issue affecting millions across our planet. A new Web portal developed by NASA’s Jet Propulsion Laboratory, Pasadena, California, gives researchers, decision makers and the public alike a resource to stay up to date with the latest developments and scientific findings in this rapidly advancing field of study. 

The portal, “Sea Level Change: Observations from Space,” is online at: https://sealevel.nasa.gov/

The portal’s key features include:
 

  • “Understanding Sea Level,” a summary of decades of scientific research that has shaped our knowledge of sea level rise: its causes, including a warming, expanding ocean and melting ice on land; projections of future sea level rise; and ways in which humanity might adapt, largely drawn from NASA data.
     
  • An interactive data analysis tool, launching in mid-2016, that will allow direct access to NASA datasets on sea level. Users will be able to manipulate these datasets to automatically generate charts, graphs and maps of sea surface height, temperature and other factors. The analysis tool will also allow users to make forecasts of future conditions, as well as “hindcasts” — retroactive calculations of past trends and conditions.
     
  • News highlights and feature stories with strong visual elements that explore the findings of sea level researchers in detail.
     
  • An extensive library of published papers on sea level-related topics, hyperlinked to individual citations throughout “Understanding Sea Level.”
     
  • A multimedia section with dynamic still and video imagery, and a glossary of sea level terms.

  • A “frequently asked questions” section maintained by sea level scientists. Users can submit questions to scientists and data managers.


The website is optimized for most mobile devices, including smartphones and tablets.

“Sea Level Change: Observations from Space” is managed by a team led by JPL scientist Carmen Boening. The team is part of the NASA Sea Level Change Team research group. 

“With sea levels rising globally, as observed by satellites over the past decades, sea level change is a hot topic in climate research,” Boening said. “This new tool provides a NASA resource for researchers and a wealth of information for members of the public seeking a deeper understanding of sea level change.”

For more information on NASA’s Earth science activities, visit: http://www.nasa.gov/earth and http://climate.nasa.gov

JPL is a division of the California Institute of Technology in Pasadena.

 

 

 

 

 

NASA, Japan Make ASTER Earth Data Available At No Cost

Posted on Updated on

In March 2016, ASTER captured the eruption of Nicaragua’s Momotombo volcano with its visible and thermal infrared bands. The ash plume is depicted by the visible bands in blue-gray; the thermal infrared bands show hot lava flows in yellow and the active summit crater in white. Vegetation is red. Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

Beginning today, all Earth imagery from a prolific Japanese remote sensing instrument operating aboard NASA’s Terra spacecraft since late 1999 is now available to users everywhere at no cost.

The public will have unlimited access to the complete 16-plus-year database for Japan’s Ministry of Economy, Trade and Industry (METI) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument, which images Earth to map and monitor the changing surface of our planet. ASTER’s database currently consists of more than 2.95 million individual scenes. The content ranges from massive scars across the Oklahoma landscape from an EF-5 tornado and the devastating aftermath of flooding in Pakistan, to volcanic eruptions in Iceland and wildfires in California.

Previously, users could access ASTER’s global digital topographic maps of Earth online at no cost, but paid METI a nominal fee to order other ASTER data products. 

In announcing the change in policy, METI and NASA cited ASTER’s longevity and continued strong environmental monitoring capabilities. Launched in 1999, ASTER has far exceeded its five-year design life and will continue to operate for the foreseeable future as part of the suite of five Earth-observing instruments on Terra.

“We anticipate a dramatic increase in the number of users of our data, with new and exciting results to come,” said Michael Abrams, ASTER science team leader at NASA’s Jet Propulsion Laboratory in Pasadena, California, home to ASTER’s U.S. science team. ASTER data are processed into products using algorithms developed at JPL and the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. A joint U.S./Japan science team validates and calibrates the instrument and data products.

ASTER is used to create detailed maps of land surface temperature, reflectance and elevation. The instrument acquires images in visible and thermal infrared wavelengths, with spatial resolutions ranging from about 50 to 300 feet (15 to 90 meters). ASTER data cover 99 percent of Earth’s landmass and span from 83 degrees north latitude to 83 degrees south. A single downward-looking ASTER scene covers an area on the ground measuring about 37-by-37 miles (60-by-60-kilometers).

ASTER uses its near-infrared spectral band and downward- and backward-viewing telescopes to create stereo-pair images, merging two slightly offset two-dimensional images to create the three-dimensional effect of depth. Each elevation measurement point in the data is 98 feet (30 meters) apart.

The broad spectral coverage and high spectral resolution of ASTER provide scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and changes over time. Example applications include monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, evaluating wetlands, monitoring thermal pollution, monitoring coral reef degradation, mapping surface temperatures of soils and geology, and measuring surface heat balance.

ASTER data are now available via electronic download from NASA’s Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey’s (USGS) Earth Resources Observation and Science Center in Sioux Falls, South Dakota, and from AIST. To access the data, visit: https://lpdaac.usgs.gov/dataset_discovery/aster or https://gbank.gsj.jp/madas/

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about ASTER, visit: http://asterweb.jpl.nasa.gov/

For more information on NASA’s Terra mission, visit: http://terra.nasa.gov

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth