NASA’s Mars Reconnaissance Orbiter

Mar’s Solar Conjuction — What Is It & What It Means

Posted on Updated on

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
andrew.c.good@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

 

 

This animation illustrates Mars solar conjunction, a period when Mars is on the opposite side of the Sun from Earth. During this time, the Sun can interrupt radio transmissions to spacecraft on and around the Red Planet. Credit: NASA/JPL-Caltech

 

The daily chatter between antennas here on Earth and those on NASA spacecraft at Mars is about to get much quieter for a few weeks. 

That’s because Mars and Earth will be on opposite sides of the Sun, a period known as Mars solar conjunction. The Sun expels hot, ionized gas from its corona, which extends far into space. During solar conjunction, this gas can interfere with radio signals when engineers try to communicate with spacecraft at Mars, corrupting commands and resulting in unexpected behavior from our deep space explorers. 

 

Read the rest of this entry »

NASA’s Opportunity Rover Mission on Mars Comes to End

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / JoAnna Wendel
NASA Headquarters, Washington

 

Artist’s Concept of Rover on Mars. Image credit: NASA/JPL/Cornell University


One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission is at an end after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet. 

The Opportunity rover stopped communicating with Earth when a severe Mars-wide dust storm blanketed its location in June 2018. After more than a thousand commands to restore contact, engineers in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL) made their last attempt to revive Opportunity Tuesday, to no avail. The solar-powered rover’s final communication was received June 10.

Read the rest of this entry »

The Mars InSight Landing Site Is Just Plain Perfect

Posted on Updated on

This artist’s concept depicts the smooth, flat ground that dominates InSight’s landing ellipse in the Elysium Planitia region of Mars. Credits: NASA/JPL-Caltech

No doubt about it, NASA explores some of the most awe-inspiring locations in our solar system and beyond. Once seen, who can forget the majesty of astronaut Jim Irwin standing before the stark beauty of the Moon’s Hadley Apennine mountain range, of the Hubble Space Telescope’s gorgeous “Pillars of Creation” or Cassini’s magnificent mosaic of Saturn?

 Mars also plays a part in this visually compelling equation, with the high-definition imagery from the Curiosity rover of the ridges and rounded buttes at the base of Mount Sharp bringing to mind the majesty of the American Southwest. That said, Elysium Planitia – the site chosen for the Nov. 26 landing of NASA’s InSight mission to Mars – will more than likely never be mentioned with those above because it is, well, plain. 

Read the rest of this entry »

Mar’s Volcanoes and Earth’s Dinosaurs Went Extinct Same Time

Posted on Updated on

Elizabeth Zubritsky
Jacob Bleacher 
Jacob Richardson
Goddard Space Flight Center, Greenbelt, Md. 

 

New research using observations from NASA’s Mars Reconnaissance Orbiter indicates that Arsia Mons, one of the largest volcanos on Mars, actively produced lava flows until about 50 million years ago. This wide view of the volcano is from the Viking 1 Orbiter. Image Credit: NASA/JPL/USGS

 

New NASA research reveals that the giant Martian volcano Arsia Mons produced one new lava flow at its summit every 1 to 3 million years during the final peak of activity. The last volcanic activity there ceased about 50 million years ago — around the time of Earth’s Cretaceous-Paleogene extinction, when large numbers of our planet’s plant and animal species (including dinosaurs) went extinct.

Located just south of Mars’ equator, Arsia Mons is the southernmost member of a trio of broad, gently sloping shield volcanoes collectively known as Tharsis Montes. Arsia Mons was built up over billions of years, though the details of its lifecycle are still being worked out. The most recent volcanic activity is thought to have taken place in the caldera-the bowl-shaped depression at the top — where 29 volcanic vents have been identified. Until now, it’s been difficult to make a precise estimate of when this volcanic field was active. 


Read the rest of this entry »

NASA Awards Launch Services Contract for Mars 2020 Rover Mission

Posted on Updated on

The design of NASA’s Mars 2020 rover leverages many successful features of the agency’s Curiosity rover, which landed on Mars in 2012, but it adds new science instruments and a sampling system to carry out the new goals for the 2020 mission. Credits: NASA

 

NASA has selected United Launch Services LLC of Centennial, Colorado, to provide launch services for a mission that will address high-priority science goals for the agency’s Journey to Mars. 

Mars 2020 is targeted for launch in July 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rover will conduct geological assessments of its landing site on Mars, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers.

Read the rest of this entry »

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Posted on

IMG_4460
This artist’s concept shows NASA’s Mars Reconnaissance Orbiter mission over the red planet. (NASA/JPL)


Mission Status Report

Tables stored in flash memory aboard NASA’s Mars Reconnaissance Orbiter (MRO) tell locations of Earth and the sun for the past 10 years, but not their locations next year. That needs to be changed. Carefully.
The long-lived orbiter relies on these tables to recover in the event of an unplanned computer shutdown. When the spacecraft computer reboots, it checks to see where it should position the antenna for communication and, even more critically, where it should position the solar arrays for power. Flash memory is “nonvolatile” — meaning that it retains information even while the power is off — so it works well for this backup role.

The tables were loaded before the spacecraft’s Aug. 12, 2005, launch and they cover location information through July 12, 2016. To be safe, the mission team plans to begin updating them next week. Doing so will require intentionally rebooting the onboard computer during a one-week suspension of MRO’s science observations and communication relay duty. Both of NASA’s active Mars rovers will use a different NASA Mars orbiter, Odyssey, for relaying their data to Earth while MRO is out of service.

Sixteen times since launch, MRO has experienced unplanned reboots that relied on the stored tables for recovery of the spacecraft. Managers anticipate that such events will continue to happen in coming years.

“Updating what’s in the memory is essential for spacecraft safety and for extending the mission,” said MRO Project Manager Dan Johnston at NASA’s Jet Propulsion Laboratory, Pasadena, California.

To update the location tables, engineers will rewrite the entire content of the nonvolatile memory on the spacecraft. The orbiter has two identical computers for redundancy, with only one of them active at a time. Each computer has its own nonvolatile memory unavailable to the other, so the rewrite needs to be done twice. The “Side B” computer has been active since an unplanned side swap in April 2015. The plan is to rewrite that computer’s nonvolatile memory starting on Nov. 2. The procedure for “Side A” will follow in early 2016.

The contents of each computer’s 256 megabytes of nonvolatile memory include backup copies of vital computer-operation files. “It’s the fundamental operating system of the spacecraft. That’s what adds risk,” Johnston said. “Just like with your home computer: If you mess with the operating system, the computer won’t work.”

Since MRO launched, the mission team has rewritten the nonvolatile memory just once, in 2009. The Side B rewrite next week will follow procedures similar to those used successfully in 2009, but with an added safeguard. After a partial rewrite, an intentional reboot will be commanded, to confirm that the newly recorded information is usable. If it is not, sufficient information from the 2009 rewrite would still be still available as backup for a successful reboot. After confirmation that the partial rewrite is successful, the rest of the memory contents will be replaced.

Though it is already in its fourth mission extension, MRO could remain a cornerstone of NASA’s Mars Exploration Program fleet for years to come. The longevity of the mission has given researchers tools to study seasonal and longer-term changes on Mars, including recently discovered seasonal activity of salty liquid water. Among other current activities, the orbiter is examining possible landing sites for future missions to Mars and relaying communications to Earth from Mars rovers.

JPL, a division of the California Institute of Technology in Pasadena, manages the MRO Project for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems in Denver built the orbiter and supports its operations. For more information about MRO, visit: http://www.nasa.gov/mor and http://mars.nasa.gov/mro and http://mars.nasa.gov/mroMission Status Report

NASA Spacecraft Detects Impact Glass on Surface of Mars

Posted on Updated on

Researchers have found deposits of impact glass preserved in Martian craters, including Alga Crater, shown here. The detection is based on data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA’s Mars Reconnaissance Orbiter. Image credit: NASA/JPL-Caltech/JHUAPL/Univ. of Arizona

Fast Facts:

  • Glass deposits in impact craters on Mars have been detected in observations by NASA’s Mars Reconnaissance Orbiter.
  • Impact glass could preserve evidence about whether Mars ever had life.

NASA’s Mars Reconnaissance Orbiter (MRO) has detected deposits of glass within impact craters on Mars. Though formed in the searing heat of a violent impact, such deposits might provide a delicate window into the possibility of past life on the Red Planet.

During the past few years, research has shown evidence about past life has been preserved in impact glass here on Earth. A 2014 study led by scientist Peter Schultz of Brown University in Providence, Rhode Island, found organic molecules and plant matter entombed in glass formed by an impact that occurred millions of years ago in Argentina. Schultz suggested that similar processes might preserve signs of life on Mars, if they were present at the time of an impact.

Fellow Brown researchers Kevin Cannon and Jack Mustard, building on the previous research, detail their data about Martian impact glass in a report now online in the journal Geology.

“The work done by Pete and others showed us that glasses are potentially important for preserving biosignatures,” Cannon said. “Knowing that, we wanted to go look for them on Mars and that’s what we did here. Before this paper, no one had been able to definitively detect them on the surface.”

Cannon and Mustard showed large glass deposits are present in several ancient, yet well-preserved, craters on Mars. Picking out the glassy deposits was no easy task. To identify minerals and rock types remotely, scientists measured the spectra of light reflected off the planet’s surface. But impact glass doesn’t have a particularly strong spectral signal.

“Glasses tend to be spectrally bland or weakly expressive, so signature from the glass tends to be overwhelmed by the chunks of rock mixed in with it,” said Mustard. “But Kevin found a way to tease that signal out.”

In a laboratory, Cannon mixed together powders with a similar composition of Martian rocks and fired them in an oven to form glass. He then measured the spectral signal from that glass.

Once Mustard had the signal from the lab glass, he used an algorithm to pick out similar signals in data from MRO’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), for which he is the deputy principal investigator.

The technique pinpointed deposits in several Martian crater central peaks, the craggy mounds that often form in the center of a crater during a large impact. The fact the deposits were found on central peaks is a good indicator that they have an impact origin.

Knowing that impact glass can preserve ancient signs of life — and now knowing that such deposits exist on the Martian surface today — opens up a potential new strategy in the search for ancient Martian life.

“The researchers’ analysis suggests glass deposits are relatively common impact features on Mars,” said Jim Green, director of NASA’s planetary science division at the agency’s headquarters in Washington. “These areas could be targets for future exploration as our robotic scientific explorers pave the way on the journey to Mars with humans in the 2030s.”

One of the craters containing glass, called Hargraves, is near the Nili Fossae trough, a 400-mile-long (about 650-kilometer-long) depression that stretches across the Martian surface. The region is one of the landing site contenders for NASA’s Mars 2020 rover, a mission to cache soil and rock samples for possible return to Earth.

Nili Fossae trough is already of scientific interest because the crust in the region is thought to date back to when Mars was a much wetter planet. The region also is rife with what appear to be ancient hydrothermal fractures, warm vents that could have provided energy for life to thrive just beneath the surface.

“If you had an impact that dug in and sampled that subsurface environment, it’s possible that some of it might be preserved in a glassy component,” Mustard said. “That makes this a pretty compelling place to go look around, and possibly return a sample.”

MRO has been examining Mars with CRISM and five other instruments since 2006.

“This significant new detection of impact glass illustrates how we can continue to learn from the ongoing observations by this long-lived mission,” said Richard Zurek, MRO project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, provided and operates CRISM. JPL, a division of the California Institute of Technology in Pasadena, manages MRO for NASA’s Science Mission Directorate in Washington. Lockheed Martin Space Systems in Denver built the orbiter and supports its operations.

For more information about CRISM, visit: http://crism.jhuapl.edu/
For more information about the Mars Reconnaissance Orbiter, visit: http://www.nasa.gov/mro and http://mars.nasa.gov/mro

Scars on Mars from 2012 Rover Landing Fade — Usually

Posted on Updated on

 

This sequence of images shows a blast zone where the sky crane from NASA’s Curiosity rover mission hit the ground after setting the rover down in August 2012, and how that dark scar’s appearance changed over the subsequent 30 months. Image Credit: NASA/JPL-Caltech/Univ. of Arizona
 


A series of observations from Mars orbit show how dark blast zones that were created during the August 2012 landing of NASA’s Curiosity rover have faded inconsistently.

The High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter made the observations on multiple dates from landing to last month. After fading for about two years, the pace of change slowed and some of the scars may have even darkened again.

The images track changes in blast zones at four locations caused by different pieces of Curiosity hardware, such as the heat shield and the descent stage. The four series, each with images from five to seven different dates since landing, are available online at:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA19159

“Spacecraft like Curiosity create these dark blast zone patterns where bright dust is blown away by the landing,” said Ingrid Daubar, a HiRISE team scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California, who has used similar blast zones to find fresh meteor impact sites on Mars. “We expected to see them fade as the wind moved the dust around during the months and years after landing, but we’ve been surprised to see that the rate of change doesn’t appear to be consistent.”

One purpose for repeated follow-up imaging of Curiosity’s landing area has been to check whether scientists could model the fading and predict how long it would take for the scars to disappear. Daubar’s work on this aids preparations for NASA’s next Mars lander, InSight, on track for launch in March 2016. The InSight mission will deploy a heat probe that will hammer itself a few yards, or meters, deep into the ground to monitor heat coming from the interior of the planet. The brightness of the ground affects temperature below ground, because a dark surface warms in sunshine more than a bright one does.

HiRISE is one of six instruments with which NASA’s Mars Reconnaissance Orbiter has been studying Mars since 2006.

NASA’s Mars Science Laboratory Project has been using the Curiosity rover to examine ancient Martian environments favorable for microbial life.

With three active NASA Mars orbiters and two Mars rovers, NASA seeks to characterize and understand Mars as a dynamic system, including its present and past environment, climate cycles, geology and biological potential. In parallel on its journey to Mars, NASA is developing the capabilities needed for human missions there.

The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp. of Boulder, Colorado. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter Project, the Mars Science Laboratory Project and the InSight Project for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter and collaborates with JPL to operate it.

Links for additional info:

About HiRISE: http://hirise.lpl.arizona.edu

About NASA’s Mars Reconnaissance Orbiter: http://mars.nasa.gov/mro

About Curiosity and NASA’s Mars Science Laboratory Project: http://mars.nasa.gov/msl

About InSight: http://insight.jpl.nasa.gov


 

Components of Beagle 2 Flight System on Mars

Posted on Updated on

PRESS RELEASE (JPL) – The Beagle 2 Mars Lander, built by the United Kingdom, has been thought lost on Mars since 2003, but has now been found in images from NASA’s Mars Reconnaissance Orbiter.

Beagle 2 was released by the European Space Agency’s Mars Express orbiter but never heard from after its expected landing. Images from the High Resolution Imaging Science Experiment (HiRISE) camera on Mars Reconnaissance Orbiter have been interpreted as showing the Beagle 2 did make a soft landing and at least partially deployed its solar panels.

A set of three observations with the orbiter’s High Resolution Imaging Science Experiment (HiRISE) camera shows Beagle 2 partially deployed on the surface of the planet, ending the mystery of what happened to the mission more than a decade ago. They show that the lander survived its Dec. 25, 2003, touchdown enough to at least partially deploy its solar arrays.

“I am delighted that Beagle 2 has finally been found on Mars,” said Mark Sims of the University of Leicester, U.K. He was an integral part of the Beagle 2 project from the start, leading the initial study phase and was Beagle 2 mission manager. “Every Christmas Day since 2003 I have wondered what happened to Beagle 2. My Christmas Day in 2003 alongside many others who worked on Beagle 2 was ruined by the disappointment of not receiving data from the surface of Mars. To be frank I had all but given up hope of ever knowing what happened to Beagle 2. The images show that we came so close to achieving the goal of science on Mars.

HiRISE images initially searched by Michael Croon of Trier, Germany, a former member of the European Space Agency’s Mars Express operations team, provide evidence for the lander and key descent components on the surface of Mars within the expected landing area of Isidis Planitia, an impact basin close to the equator.

Subsequent re-imaging and analysis by the Beagle 2 team, the HiRISE team and NASA’s Jet Propulsion Laboratory, Pasadena, California, have confirmed that the targets discovered are of the correct size, shape, color and dispersion to be Beagle 2. JPL planetary geologist Tim Parker, who has assisted in the search and processed some of the images said, “I’ve been looking over the objects in the images carefully, and I’m convinced that these are Beagle 2 hardware.”

Analysis of the images indicates what appears to be a partially deployed configuration, with what is thought to be the rear cover with its pilot/drogue chute (still attached) and main parachute close by. Due to the small size of Beagle 2 (less than 7 feet, or 2 meters across for the deployed lander) it is right at the limit of detection of HiRISE, the highest-resolution camera orbiting Mars. The targets are within the expected landing area at a distance of about three miles (five kilometers) from its center.

“I can imagine the sense of closure that the Beagle 2 team must feel,” said Richard Zurek of JPL, project scientist now for Mars Reconnaissance Orbiter (MRO) and previously for NASA’s still-missing 1998 Mars Polar Lander. “MRO has helped find safe landing sites on Mars for the Curiosity and Phoenix missions and has searched for missing craft to learn what may have gone wrong. It’s an extremely difficult task, as the craft are small and the search areas are vast. It takes the best camera we have in Mars orbit and work by dedicated individuals to be successful at this.”

HiRISE is operated by the University of Arizona, Tucson. The instrument was built by Ball Aerospace & Technologies Corp. of Boulder, Colorado. The Mars Reconnaissance Orbiter Project is managed for NASA’s Science Mission Directorate in Washington, by JPL, a division of the California Institute of Technology, Pasadena.

View all images (color) on JPL site

For more information about HiRISE

Additional information about MRO

Media Contact

Guy Webster
Jet Propulsion Laboratory, Pasadena, California
818-354-6278
guy.webster@jpl.nasa.gov