National Radio Astronomy Observatory

Black Hole Image Makes History

Posted on Updated on

Elizabeth Landau

NASA Headquarters, Washington

 

 

Scientists have obtained the first image of a black hole, using Event Horizon Telescope observations of the center of the galaxy M87. The image shows a bright ring formed as light bends in the intense gravity around a black hole that is 6.5 billion times more massive than the Sun. Credit: Event Horizon Telescope Collaboration

 

 

A black hole and its shadow have been captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

 

A black hole is an extremely dense object from which no light can escape. Anything that comes within a black hole’s “event horizon,” its point of no return, will be consumed, never to re-emerge, because of the black hole’s unimaginably strong gravity. By its very nature, a black hole cannot be seen, but the hot disk of material that encircles it shines bright. Against a bright backdrop, such as this disk, a black hole appears to cast a shadow.


 

Read the rest of this entry »

Halloween Skies to Include Dead Comet Flyby

Posted on Updated on

 

 

The large space rock that will zip past Earth this Halloween is most likely a dead comet that, fittingly, bears an eerie resemblance to a skull.

Scientists observing asteroid 2015 TB145 with NASA’s Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, have determined that the celestial object is more than likely a dead comet that has shed its volatiles after numerous passes around the sun.

The belated comet has also been observed by optical and radar observatories around the world, providing even more data, including our first close-up views of its surface. Asteroid 2015 TB145 will safely fly by our planet at just under 1.3 lunar distances, or about 302,000 miles (486,000 kilometers), on Halloween (Oct. 31) at 1 p.m. EDT (10 a.m. PDT, 17:00 UTC).

The first radar images of the dead comet were generated by the National Science Foundation’s 305-meter (1,000-foot) Arecibo Observatory in Puerto Rico. The radar images from Arecibo indicate the object is spherical in shape and approximately 2,000 feet (600 meters) in diameter and completes a rotation about once every five hours. 

“The IRTF data may indicate that the object might be a dead comet, but in the Arecibo images it appears to have donned a skull costume for its Halloween flyby,” said Kelly Fast, IRTF program scientist at NASA Headquarters and acting program manager for NASA’s NEO Observations Program.

These first radar images from the National Science Foundation’s 1,000-foot (305-meter) Arecibo Observatory in Puerto Rico, indicate the near-Earth object is spherical in shape and approximately 2,000 feet (600 meters) in diameter. The radar images were taken on Oct. 30, 2015, and the image resolution is 25 feet (7.5 meters) per pixel.Image credit: NAIC-Arecibo/NSF

Managed by the University of Hawaii for NASA, the IRTF’s 3-meter (10 foot) telescope collected infrared data on the object. The data may finally put to rest the debate over whether 2015 TB145, with its unusual orbit, is an asteroid or is of cometary origin.

“We found that the object reflects about six percent of the light it receives from the sun,” said Vishnu Reddy, a research scientist at the Planetary Science Institute, Tucson, Arizona. “That is similar to fresh asphalt, and while here on Earth we think that is pretty dark, it is brighter than a typical comet which reflects only 3 to 5 percent of the light. That suggests it could be cometary in origin — but as there is no coma evident, the conclusion is it is a dead comet.”

Radar images generated by the Arecibo team are available at:

https://www.facebook.com/notes/national-astronomy-and-ionosphere-center-arecibo-observatory/near-earth-asteroid-2015-tb145-passes-by-without-a-fright/1082765941733673

Asteroid 2015 TB145 was discovered on Oct. 10, 2015, by the University of Hawaii’s Pan-STARRS-1 (Panoramic Survey Telescope and Rapid Response System) on Haleakala, Maui, part of the NASA-funded Near-Earth Object Observations (NEOO) Program. The next time the asteroid will be in Earth’s neighborhood will be in September 2018, when it will make a distant pass at about 24 million miles (38 million kilometers), or about a quarter the distance between Earth and the sun.

Radar is a powerful technique for studying an asteroid’s size, shape, rotation, surface features and surface roughness, and for improving the calculation of asteroid orbits. Radar measurements of asteroid distances and velocities often enable computation of asteroid orbits much further into the future than would be possible otherwise.

NASA places a high priority on tracking asteroids and protecting our home planet from them. In fact, the U.S. has the most robust and productive survey and detection program for discovering near-Earth objects (NEOs). To date, U.S.-funded assets have discovered over 98 percent of the known NEOs.

In addition to the resources NASA puts into understanding asteroids, it also partners with other U.S. government agencies, university-based astronomers, and space science institutes across the country, often with grants, interagency transfers and other contracts from NASA, and also with international space agencies and institutions that are working to track and better understand these objects. In addition, NASA values the work of numerous highly skilled amateur astronomers, whose accurate observational data helps improve asteroid orbits after they are found.

NASA’s Jet Propulsion Laboratory, Pasadena, California, hosts the Center for Near-Earth Object Studies for NASA’s Near-Earth Object Observations Program within the agency’s Science Mission Directorate.

More information about asteroids and near-Earth objects is at these websites:

http://neo.jpl.nasa.gov

http://www.jpl.nasa.gov/asteroidwatch

 

 

NASA Spots the ‘Great Pumpkin’: Halloween Asteroid a Treat for Radar Astronomers

Posted on

This is a graphic depicting the orbit of asteroid 2015 TB145. The asteroid will safely fly past Earth slightly farther out than the moon’s orbit on Oct. 31 at 10:05 a.m. Pacific (1:05 p.m. EDT and 17:05 UTC). Image credit: NASA/JPL-Caltech

NASA scientists are tracking the upcoming Halloween flyby of asteroid 2015 TB145 with several optical observatories and the radar capabilities of the agency’s Deep Space Network at Goldstone, California. The asteroid will fly past Earth at a safe distance slightly farther than the moon’s orbit on Oct. 31 at 10:01 a.m. PDT (1:01 p.m. EDT). Scientists are treating the flyby of the estimated 1,300-foot-wide (400-meter) asteroid as a science target of opportunity, allowing instruments on “spacecraft Earth” to scan it during the close pass.

Published on Oct 29, 2015JPL scientist Marina Brozovic explains how radar will be used to study asteroid 2015 TB145 when it safely passes Earth on Oct. 31, 2015. Scientists are tracking the Halloween flyby with several optical observatories and the radar capabilities of the agency’s Deep Space Network at Goldstone, California. Radar images should be available within a few days of the flyby. The asteroid will fly past Earth at a safe distance slightly farther than the moon’s orbit on Oct. 31 at 10:01 a.m. PDT (1:01 p.m. EDT). Scientists are treating the flyby of the estimated 1,300-foot-wide (400-meter) asteroid as a science target of opportunity. 

Asteroid 2015 TB145 was discovered on Oct. 10, 2015, by the University of Hawaii’s Pan-STARRS-1 (Panoramic Survey Telescope and Rapid Response System) on Haleakala, Maui, part of the NASA-funded Near-Earth Object Observation (NEOO) Program. According to the catalog of near-Earth objects (NEOs) kept by the Minor Planet Center, this is the closest currently known approach by an object this large until asteroid 1999 AN10, at about 2,600 feet (800 meters) in size, approaches at about 1 lunar distance (238,000 miles from Earth) in August 2027.

“The trajectory of 2015 TB145 is well understood,” said Paul Chodas, manager of the Center for Near Earth Object Studies at NASA’s Jet Propulsion Laboratory, Pasadena, California. “At the point of closest approach, it will be no closer than about 300,000 miles — 480,000 kilometers or 1.3 lunar distances. Even though that is relatively close by celestial standards, it is expected to be fairly faint, so night-sky Earth observers would need at least a small telescope to view it.

The gravitational influence of the asteroid is so small it will have no detectable effect on the moon or anything here on Earth, including our planet’s tides or tectonic plates

The Center for NEO Studies at JPL is a central node for NEO data analysis in NASA’s Near-Earth Object Observation Program and a key group involved with the international collaboration of astronomers and scientists who keep watch on the sky with their telescopes, looking for asteroids that could be a hazard to impact our planet and predicting their paths through space for the foreseeable future

“The close approach of 2015 TB145 at about 1.3 times the distance of the moon’s orbit, coupled with its size, suggests it will be one of the best asteroids for radar imaging we’ll see for several years,” said Lance Benner, of JPL, who leads NASA’s asteroid radar research program. “We plan to test a new capability to obtain radar images with two-meter resolution for the first time and hope to see unprecedented levels of detail.”

During tracking, scientists will use the 34-meter (110-foot) DSS 13 antenna at Goldstone to bounce radio waves off the asteroid. Radar echoes will in turn be collected by the National Radio Astronomy Observatory’s Green Bank Telescope in Green Bank, West Virginia, and the National Astronomy and Ionosphere Center’s Arecibo Observatory, Puerto Rico. NASA scientists hope to obtain radar images of the asteroid as fine as about 7 feet (2 meters) per pixel. This should reveal a wealth of detail about the object’s surface features, shape, dimensions and other physical properties

“The asteroid’s orbit is very oblong with a high inclination to below the plane of the solar system,” said Benner. “Such a unique orbit, along with its high encounter velocity — about 35 kilometers or 22 miles per second — raises the question of whether it may be some type of comet. If so, then this would be the first time that the Goldstone radar has imaged a comet from such a close distance.”

NASA’s Near-Earth Object Observations Program detects, tracks and characterizes asteroids and comets passing within 30 million miles of Earth using both ground- and space-based telescopes. The NEOO Program, sometimes called “Spaceguard,” discovers these objects, characterizes the physical nature of a subset of them, and predicts their paths to determine if any could be potentially hazardous to our planet. There are no known credible impact threats to date — only the ongoing and harmless in-fall of meteoroids, tiny asteroids that burn up in the atmosphere

JPL hosts the Center for Near-Earth Object Studies for NASA’s Near-Earth Object Observations Program within the agency’s Science Mission Directorate. JPL is a division of the California Institute of Technology in Pasadena.

More information about asteroids and near-Earth objects is at:  http://neo.jpl.nasa.gov and http://www.jpl.nasa.gov/asteroidwatch

Ten Exciting Astronomy Stories from 2014 (Space Daily)

Posted on Updated on

PHOTO: Messier 82, seen in radio frequencies by the Karl G. Jansky Very Large Array. (Credit: Josh Marvil (NM Tech/NRAO), Bill Saxton (NRAO/AUI/NSF), NASA)

Using news releases from the National Radio Astronomy Observatory, Science Daily (www.sciencedaily.com) staffers at the NRAO came up with a list of the top 10 stories of 2014 using both the story’s scientific impact and public interest.

NRAO Chief Scientist Chris Carilli said of the list, “These ‘top ten’ are just a small sampling of the myriad ways in which the state-of-the-art NRAO facilities are enabling forefront research by the astronomical community.”

Carilli also said of 2014 list that U.S. and International astronomers, using new telescopes, instruments and techniques, worked on addressing the issues on the formation of planets, stars and galaxies, the fundamentals of physics and cosmology, astrochemistry and biology; “While finding some real surprises along the way!”

Continue to the top 10 stories of 2014: