NASA/JPL

Mar’s Solar Conjuction — What Is It & What It Means

Posted on Updated on

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
andrew.c.good@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

 

 

This animation illustrates Mars solar conjunction, a period when Mars is on the opposite side of the Sun from Earth. During this time, the Sun can interrupt radio transmissions to spacecraft on and around the Red Planet. Credit: NASA/JPL-Caltech

 

The daily chatter between antennas here on Earth and those on NASA spacecraft at Mars is about to get much quieter for a few weeks. 

That’s because Mars and Earth will be on opposite sides of the Sun, a period known as Mars solar conjunction. The Sun expels hot, ionized gas from its corona, which extends far into space. During solar conjunction, this gas can interfere with radio signals when engineers try to communicate with spacecraft at Mars, corrupting commands and resulting in unexpected behavior from our deep space explorers. 

 

Read the rest of this entry »

The Mars InSight Landing Site Is Just Plain Perfect

Posted on Updated on

This artist’s concept depicts the smooth, flat ground that dominates InSight’s landing ellipse in the Elysium Planitia region of Mars. Credits: NASA/JPL-Caltech

No doubt about it, NASA explores some of the most awe-inspiring locations in our solar system and beyond. Once seen, who can forget the majesty of astronaut Jim Irwin standing before the stark beauty of the Moon’s Hadley Apennine mountain range, of the Hubble Space Telescope’s gorgeous “Pillars of Creation” or Cassini’s magnificent mosaic of Saturn?

 Mars also plays a part in this visually compelling equation, with the high-definition imagery from the Curiosity rover of the ridges and rounded buttes at the base of Mount Sharp bringing to mind the majesty of the American Southwest. That said, Elysium Planitia – the site chosen for the Nov. 26 landing of NASA’s InSight mission to Mars – will more than likely never be mentioned with those above because it is, well, plain. 

Read the rest of this entry »

NASA Engineers Dream Big With Small Spacecraft

Posted on Updated on

 

 

MarCO CubeSat
An artist’s rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats — a kind of modular, mini-satellite — attempting to fly to another planet. They’re designed to fly along behind NASA’s InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight’s entry, descent and landing back to Earth. Though InSight’s mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. Credit: NASA/JPL

 

Many of NASA’s most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo — all large machines that could measure up to a school bus.

But in the past two decades, mini-satellites called CubeSats have made space accessible to a new generation. These briefcase-sized boxes are more focused in their abilities and have a fraction of the mass — and cost — of some past titans of space.

In May, engineers will be watching closely as NASA launches its first pair of CubeSats designed for deep space. The twin spacecraft are called Mars Cube One, or MarCO, and were built at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Read the rest of this entry »

NASA’s Juno Spacecraft Set for Fifth Jupiter Flyby

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington

 

This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian “galaxy” of swirling storms. Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

 

NASA’s Juno spacecraft will make its fifth flyby over Jupiter’s mysterious cloud tops on Monday, March 27, at 1:52 a.m. PDT (4:52 a.m. EDT, 8:52 UTC).

At the time of closest approach (called perijove), Juno will be about 2,700 miles (4,400 kilometers) above the planet’s cloud tops, traveling at a speed of about 129,000 miles per hour (57.8 kilometers per second) relative to the gas-giant planet. All of Juno’s eight science instruments will be on and collecting data during the flyby.


Read the rest of this entry »

ESO Discovers Earth-Size Planet in Habitable Zone of Nearest Star

Posted on Updated on

 

This artist’s impression shows a view of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the solar system. The double star Alpha Centauri AB also appears in the image. Credit: ESO/M. Kornmesser

A newly discovered, roughly Earth-sized planet orbiting our nearest neighboring star might be habitable, according to a team of astronomers using the European Southern Observatory’s 3.6-meter telescope at La Silla, Chile, along with other telescopes around the world.

The exoplanet is at a distance from its star that allows temperatures mild enough for liquid water to pool on its surface.

“NASA congratulates ESO on the discovery of this intriguing planet that has captured the hopes and the imagination of the world,” says Paul Hertz, Astrophysics Division Director at NASA Headquarters, Washington. “We look forward to learning more about the planet, whether it holds ingredients that could make it suitable for life.”

The new planet circles Proxima Centauri, the smallest member of a triple star system known to science fiction fans everywhere as Alpha Centauri. Just over 4 light-years away, Proxima is the closest star to Earth, besides our own sun.

“This is really a game-changer in our field,” said Olivier Guyon, a planet-hunting affiliate at NASA’s Jet Propulsion Laboratory, Pasadena, California, and associate professor at the University of Arizona, Tucson. “The closest star to us has a possible rocky planet in the habitable zone. That’s a huge deal. It also boosts the already existing, mounting body of evidence that such planets are near, and that several of them are probably sitting quite close to us. This is extremely exciting.”

The science team that made the discovery, led by Guillem Anglada-Escudé of Queen Mary University of London, will publish its findings Aug. 25 in the Journal Nature in a 33-page paper titledA terrestrial planet candidate in a temperate orbit around Proxima Centauri. The team traced subtle wobbles in the star revealing, the presence of a star-tugging planet.

They determined that the new planet, dubbed Proxima b, is at least 1.3 times the mass of Earth. It orbits its star far more closely than Mercury orbits our sun, taking only 11 days to complete a single orbit — a “year” on Proxima b.


Long list of unknowns

The stunning announcement comes with plenty of caveats. While the new planet lies within its star’s “habitable zone” — a distance at which temperatures are right for liquid water — scientists do not yet know if the planet has an atmosphere.

It also orbits a red-dwarf star, far smaller and cooler than our sun. The planet likely presents only one face to its star, as the moon does to Earth, instead of rotating through our familiar days and nights. And Proxima b could be subject to potentially life-extinguishing stellar flares.

“That’s the worry in terms of habitability,” said Scott Gaudi, an astronomy professor at Ohio State University, Columbus, and JPL affiliate credited with numerous exoplanet discoveries. “This thing is being bombarded by a fair amount of high-energy radiation. It’s not obvious if it’s going to have a magnetic field strong enough to prevent its whole atmosphere from getting blown away. But those are really hard calculations, and I certainly wouldn’t put my money either way on that.”

Despite the unknowns, the discovery was hailed by NASA exoplanet hunters as a major milestone on the road to finding other possible life-bearing worlds within our stellar neighborhood.

“It definitely gives us something to be excited about,” said Sara Seager, a planetary science and physics professor at the Massachusetts Institute of Technology, Cambridge, and an exoplanet-hunting pioneer. “I think it will definitely motivate people to get moving.”


‘Not completely unexpected’

Statistical surveys of exoplanets — planets orbiting other stars — by NASA’s Kepler space telescope have revealed a large proportion of small planets around small stars, she said.

The Kepler data suggest we should expect at least one potentially habitable, Earth-size planet orbiting M-type stars, like Proxima, within 10 light-years of our solar system.

So the latest discovery was “not completely unexpected. We’re more lucky than surprised,” Seager said. But it “helps buoy our confidence that planets are everywhere.”

It’s especially encouraging for upcoming space telescopes, which can contribute to the study of the new planet. The James Webb Space Telescope, launching in 2018, may be able to follow-up on this planet with spectroscopy to determine the contents of its atmosphere. NASA’s Transiting Exoplanet Survey Satellite (TESS) will find similar planets in the habitable zone in the stellar backyard of our solar system in 2018.

One of TESS’s goals is to find planets orbiting nearby M-dwarf stars like Proxima Centauri.

“It’s great news just to know that M-dwarf planets could be as common as we think they are,” Seager said.

Another possible inspiration Proxima b could reignite: the admittedly far-off goal of sending a probe to another solar system.

Bill Borucki, an exoplanet pioneer, said the new discovery might inspire more interstellar research, especially if Proxima b proves to have an atmosphere.

Coming generations of space and ground-based telescopes, including large ground telescopes now under construction, could yield more information about the planet, perhaps inspiring ideas on how to pay it a visit.

“It may be that the first time we get really good information is from the newer telescopes that may be coming online in a decade or two,” said Borucki, now retired, a former principal investigator for Kepler, which has discovered the bulk of the more than 3,300 exoplanets found so far.

“Maybe people will talk about sending a probe to that star system,” Borucki said. “I think it does provide some inspiration for an interstellar mission, because now we know there is a planet in the habitable zone, probably around the mass of Earth, around the closest star. I think it does inspire a future effort to go there and check it out.”

To read the ESO press release, visit: http://www.eso.org/public/news/eso1629/?lang

To learn more about NASA’s Exoplanet Program, visit: http://exoplanets.nasa.gov

Test for Damp Ground at Mars Streaks Finds None

Posted on Updated on

Blue dots on this map indicate sites of recurring slope lineae (RSL) in part of the Valles Marineris canyon network on Mars. RSL are seasonal dark streaks that may be indicators of liquid water. The area mapped here has the highest density of known RSL on Mars. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

 

 

Seasonal dark streaks on Mars that have become one of the hottest topics in interplanetary research don’t hold much water, according to the latest findings from a NASA spacecraft orbiting Mars.

The new results from NASA’s Mars Odyssey mission rely on ground temperature, measured by infrared imaging using the spacecraft’s Thermal Emission Imaging System (THEMIS). They do not contradict last year’s identification of hydrated salt at these flows, which since their 2011 discovery have been regarded as possible markers for the presence of liquid water on modern Mars. However, the temperature measurements now identify an upper limit on how much water is present at these darkened streaks: about as much as in the driest desert sands on Earth.

When water is present in the spaces between particles of soil or grains of sand, it affects how quickly a patch of ground heats up during the day and cools off at night.

“We used a very sensitive technique to quantify the amount of water associated with these features,” said Christopher Edwards of Northern Arizona University, Flagstaff. “The results are consistent with no moisture at all and set an upper limit at three percent water.”

The features, called recurring slope lineae or RSL, have been identified at dozens of sites on Mars. A darkening of the ground extends downhill in fingerlike flows during spring or summer, fades away in fall and winter, then repeats the pattern in another year at the same location. The process that causes the streaks to appear is still a puzzle.

“Some type of water-related activity at the uphill end still might be a factor in triggering RSL, but the darkness of the ground is not associated with large amounts of water, either liquid or frozen,” Edwards said. “Totally dry mechanisms for explaining RSL should not be ruled out.”

He and Sylvain Piqueux of NASA’s Jet Propulsion Laboratory, Pasadena, California, analyzed several years of THEMIS infrared observations of a crater-wall region within the large Valles Marineris canyon system on Mars. Numerous RSL features sit close together in some parts of the study region. Edwards and Piqueux compared nighttime temperatures of patches of ground averaging about 44 percent RSL features, in the area, to temperatures of nearby slopes with no RSL. They found no detectable difference, even during seasons when RSL were actively growing.

The report of these findings by Edwards and Piqueux has been accepted by the peer-reviewed Geophysical Research Letters and is available online.

There is some margin of error in assessing ground temperatures with the multiple THEMIS observations used in this study, enough to leave the possibility that the RSL sites differed undetectably from non-RSL sites by as much as 1.8 degrees Fahrenheit (1 Celsius degree). The researchers used that largest possible difference to calculate the maximum possible amount of water — either liquid or frozen — in the surface material.

How deeply moisture reaches beneath the surface, as well as the amount of water present right at the surface, affects how quickly the surface loses heat. The new study calculates that if RSL have only a wafer-thin layer of water-containing soil, that layer contains no more than about an ounce of water per two pounds of soil (3 grams water per kilogram of soil). That is about the same concentration of water as in the surface material of the Atacama Desert and Antarctic Dry Valleys, the driest places on Earth. If the water-containing layer at RSL is thicker, the amount of water per pound or kilogram of soil would need to be even less, to stay consistent with the temperature measurements.

Research published last year identified hydrated salts in the surface composition of RSL sites, with an increase during the season when streaks are active. Hydrated salts hold water molecules affecting the crystalline structure of the salt.

“Our findings are consistent with the presence of hydrated salts, because you can have hydrated salt without having enough for the water to start filling pore spaces between particles,” Edwards said. “Salts can become hydrated by pulling water vapor from the atmosphere, with no need for an underground source of the water.”

“Through additional data and studies, we are learning more about these puzzling seasonal features — narrowing the range of possible explanations,” said Michael Meyer. “It just shows us that we still have much to learn about Mars and its potential as a habitat for life.”

The new study touches on additional factors that add to understanding of RSL.

— If RSL were seasonal flows of briny water followed by evaporation, annual buildup of crust-forming salt should affect temperature properties. So the lack of a temperature difference between RSL and non-RSL sites is evidence against evaporating brines.

— Lack of a temperature difference is also evidence against RSL being cascades of dry material with different thermal properties than the pre-existing slope material, such as would be the case with annual avalanching of powdery dust that accumulates from dusty air.

Arizona State University, Tempe, provided and operates the THEMIS camera, which records observations in both infrared and visible-light wavelengths. JPL, a division of Caltech, manages the Mars Odyssey project for NASA. Lockheed Martin Space Systems, Denver, built the orbiter and collaborates with JPL to operate it.

NASA Announces Coverage, Media Activities for Juno Mission Arrival at Jupiter

Posted on Updated on

NASA’s solar-powered Juno spacecraft will arrive at Jupiter July 4, 2016. Credits: NASA

 

This Fourth of July, NASA’s solar-powered Juno spacecraft will arrive at Jupiter after an almost five-year journey. News briefings, photo opportunities and other media events will be held at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, and air live on NASA Television and the agency’s website. 

Juno was launched August 5, 2011 from Cape Canaveral in Florida on an Atlas V rocket. It was estimated to take five years for the satellite to reach Jupiter, the only other gas giant without a dedicated satellite.

In the evening of July 4, Juno will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour (542 meters per second) so it can be captured into the gas giant’s orbit. Once in Jupiter’s orbit, the spacecraft will circle the Jovian world 37 times during 20 months, skimming to within 3,100 miles (5,000 kilometers) above the cloud tops. This is the first time a spacecraft will orbit the poles of Jupiter, providing new answers to ongoing mysteries about the planet’s core, composition and magnetic fields.

Juno will improve our understanding of the solar system’s beginnings by revealing the origin and evolution of Jupiter.

Specifically, Juno will… 

  • Determine how much water is in Jupiter’s atmosphere, which helps determine which planet formation theory is correct (or if new theories are needed)
  • Look deep into Jupiter’s atmosphere to measure composition, temperature, cloud motions and other properties
  • Map Jupiter’s magnetic and gravity fields, revealing the planet’s deep structure
  • Explore and study Jupiter’s magnetosphere near the planet’s poles, especially the auroras – Jupiter’s northern and southern lights – providing new insights about how the planet’s enormous magnetic force field affects its atmosphere.

Juno’s principal goal is to understand the origin and evolution of Jupiter. Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our solar system during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars.

With its suite of science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras.

While the events below are for the media, the public is invited to watch each of the events starting on June 16. The following are televised events are: 

NASA TV Events Schedule 

For all media briefings, reporters may ask questions by phone by contacting Gina Fontes at 818-354-9380 or georgina.d.fontes@jpl.nasa.gov. All times are Eastern.
 

Thursday, June 16
2 p.m. — Mission status briefing at NASA Headquarters in Washington

Thursday, June 30
4 p.m. — Mission overview news briefing at JPL
5 p.m. — Mission outreach briefing at JPL

Monday, July 4 – Orbit Insertion Day
Noon — Pre-orbit insertion briefing at JPL
10:30 p.m. — Orbit insertion and NASA TV commentary begin

Tuesday, July 5
1 a.m. — Post-orbit insertion briefing at JPL

 

To watch all of these events online, visit: http://www.nasa.gov/nasatv or http://www.ustream.tv/nasa or http://www.ustream.tv/nasajpl


Additional material on Juno’s mission was added from additional sources by George McGinn to add more about why these events are important to planetary science.  – George McGinn 

New NASA Web Portal Shines Beacon on Rising Seas

Posted on Updated on

Fort Lauderdale, Florida, is at risk from rising sea levels. Credit: Dave/Flickr Creative Commons/CC BY 2.0

 

Sea level rise is a critical global issue affecting millions across our planet. A new Web portal developed by NASA’s Jet Propulsion Laboratory, Pasadena, California, gives researchers, decision makers and the public alike a resource to stay up to date with the latest developments and scientific findings in this rapidly advancing field of study. 

The portal, “Sea Level Change: Observations from Space,” is online at: https://sealevel.nasa.gov/

The portal’s key features include:
 

  • “Understanding Sea Level,” a summary of decades of scientific research that has shaped our knowledge of sea level rise: its causes, including a warming, expanding ocean and melting ice on land; projections of future sea level rise; and ways in which humanity might adapt, largely drawn from NASA data.
     
  • An interactive data analysis tool, launching in mid-2016, that will allow direct access to NASA datasets on sea level. Users will be able to manipulate these datasets to automatically generate charts, graphs and maps of sea surface height, temperature and other factors. The analysis tool will also allow users to make forecasts of future conditions, as well as “hindcasts” — retroactive calculations of past trends and conditions.
     
  • News highlights and feature stories with strong visual elements that explore the findings of sea level researchers in detail.
     
  • An extensive library of published papers on sea level-related topics, hyperlinked to individual citations throughout “Understanding Sea Level.”
     
  • A multimedia section with dynamic still and video imagery, and a glossary of sea level terms.

  • A “frequently asked questions” section maintained by sea level scientists. Users can submit questions to scientists and data managers.


The website is optimized for most mobile devices, including smartphones and tablets.

“Sea Level Change: Observations from Space” is managed by a team led by JPL scientist Carmen Boening. The team is part of the NASA Sea Level Change Team research group. 

“With sea levels rising globally, as observed by satellites over the past decades, sea level change is a hot topic in climate research,” Boening said. “This new tool provides a NASA resource for researchers and a wealth of information for members of the public seeking a deeper understanding of sea level change.”

For more information on NASA’s Earth science activities, visit: http://www.nasa.gov/earth and http://climate.nasa.gov

JPL is a division of the California Institute of Technology in Pasadena.

 

 

 

 

 

Media Invited to See NASA’s Orion Crew Module for its Journey to Mars

Posted on Updated on

January 20, 2016
MEDIA ADVISORY M16-005

*** NOTE: Press release are usually published under that page “Media Releases (Information for Journalist).” These press releases are usually meetings or presentation of studies. The public will most of the time have access to view or listen to most of these, but only credentialed media can ask question.

Also, before the meeting documentation may be made available, sometimes weeks before the meeting. If the documents are embargoed, we in the press know that means the information cannot be published before the embargo date and time. We use the time to pre-write our stories and prepare questions, but the embargo must be honored by all.

–  George McGinn, Examining Life (And Things of Interest), Daily Defense News and Cosmology and Space Exploration news websites.


Orion’s pressure vessel was completed Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the spacecraft’s underlying structure on which all of the spacecraft’s systems and subsystems are built and integrated. (Credit: NASA)

 

NASA’s Orion crew module will be available to media at two NASA locations Jan. 26th and in early February, as engineers continue to prepare the spacecraft to send astronauts deeper into space than ever before, including to an asteroid placed in lunar orbit and on the journey to Mars.

At 10:30 a.m. EST on Tuesday, Jan. 26, the agency’s Michoud Assembly Facility in New Orleans will host a media viewing and facility tour of the spacecraft’s recently completed pressure vessel, the underlying structure of the crew module, before it ships to NASA’s Kennedy Space Center in Florida.

To attend the event at Michoud, reporters must contact Chip Howat at 504-257-0478 or carl.j.howat@nasa.gov by 3 p.m. Monday, Jan. 25. International media accreditation for this event is closed.

The Orion pressure vessel provides a sealed environment for astronaut life support in future human-rated crew modules. Technicians at Michoud began welding together the seven large aluminum pieces of Orion’s primary structure in precise detail last September. At Kennedy, Orion will be outfitted with the spacecraft’s systems and subsystems, processed and integrated with NASA’s Space Launch System (SLS) ahead of their first joint exploration mission, or EM-1.

Michoud also is where the massive core stage of SLS is being manufactured. Reporters will be able to view tooling and newly manufactured hardware for SLS, and hear about mission progress from personnel across NASA.

Individuals available for interviews during the tour include:

  • Bill Hill, deputy associate administrator for Exploration Systems Development at NASA Headquarters in Washington
  • Mike Sarafin, EM-1 mission manager at NASA Headquarters
  • Mark Kirasich, Orion program manager at NASA’s Johnson Space Center in Houston
  • Scott Wilson, Orion production manager at Kennedy
  • John Honeycutt, SLS program manager at the agency’s Marshall Space Flight Center in Huntsville, Alabama
  • Steve Doering, SLS core stage manager at Marshall
  • Mike Bolger, Ground Systems Development and Operations program manager at Kennedy
  • NASA astronaut Rick Mastracchio
  • Mike Hawes, Orion program manager for Lockheed Martin
  • Jim Bray, crew module director for Lockheed Martin 

Orion will depart Michoud on or about Feb. 1 and travel to Kennedy aboard NASA’s Super Guppy airplane. Additional details for Orion’s arrival at Kennedy, including media accreditation, are forthcoming.

For more information about Orion, visit: http://www.nasa.gov/orion

-end- 

 

Voyager Mission Celebrates 30 Years Since Uranus

Posted on Updated on

This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

 

Humanity has visited Uranus only once, and that was 30 years ago. NASA’s Voyager 2 spacecraft got its closest look at the mysterious, distant, gaseous planet on Jan. 24, 1986.

Voyager 2 sent back stunning images of the planet and its moons during the flyby, which allowed for about 5.5 hours of close study. The spacecraft got within 50,600 miles (81,500 kilometers) of Uranus during that time.

“We knew Uranus would be different because it’s tipped on its side, and we expected surprises,” said Ed Stone, project scientist for the Voyager mission, based at the California Institute of Technology, Pasadena. Stone has served as project scientist since 1972, continuing in that role today.

Uranus revealed itself to be the coldest planet known in our solar system, even though it’s not the farthest from the sun. This is because it has no internal heat source.

Scientists determined that the atmosphere of Uranus is 85 percent hydrogen and 15 percent helium. There was also evidence of a boiling ocean about 500 miles (800 kilometers) below the cloud tops.

Scientists found that Uranus has a magnetic field different from any they had ever encountered previously. At Mercury, Earth, Jupiter and Saturn, the magnetic field is aligned approximately with the rotational axis.

“Then we got to Uranus and saw that the poles were closer to the equator,” Stone said. “Neptune turned out to be similar. The magnetic field was not quite centered with the center of the planet.”

This surface magnetic field of Uranus was also stronger than that of Saturn. Data from Voyager 2 helped scientists determine that the magnetic tail of Uranus twists into a helix stretching 6 million miles (10 million kilometers) in the direction pointed away from the sun. Understanding how planetary magnetic fields interact with the sun is a key part of NASA’s goal to understand the very nature of space. Not only does studying the sun-planet connection provide information useful for space travel, but it helps shed light on the origins of planets and their potential for harboring life.

Voyager 2 also discovered 10 new moons (there are 27 total) and two new rings at the planet, which also proved fascinating. An icy moon called Miranda revealed a peculiar, varied landscape and evidence of active geologic activity in the past. While only about 300 miles (500 kilometers) in diameter, this small object boasts giant canyons that could be up to 12 times as deep as the Grand Canyon in Arizona. Miranda also has three unique features called “coronae,” which are lightly cratered collections of ridges and valleys. Scientists think this moon could have been shattered and then reassembled.

Mission planners designed Voyager 2’s Uranus encounter so that the spacecraft would receive a gravity assist to help it reach Neptune. In 1989, Voyager 2 added Neptune to its resume of first-ever looks.

“The Uranus encounter was very exciting for me,” said Suzanne Dodd, project manager for Voyager, based at NASA’s Jet Propulsion Laboratory, Pasadena, California, who began her career with the mission while Voyager 2 was en route to Uranus.” It was my first planetary encounter and it was of a planet humanity had never seen up close before. Every new image showed more details of Uranus, and it had lots of surprises for the scientists. I hope another spacecraft will be sent to explore Uranus, to explore the planet in more detail, in my lifetime.”

Voyager 2 was launched on Aug. 20, 1977, 16 days before its twin, Voyager 1. In August 2012, Voyager 1 made history as the first spacecraft to enter interstellar space, crossing the boundary encompassing our solar system’s planets, sun and solar wind. Voyager 2 is also expected to reach interstellar space within the next several years.

The Voyagers were built by JPL, which continues to operate both spacecraft. JPL is a division of Caltech. For more information about the Voyager spacecraft, visit: http://www.nasa.gov/voyager and http://voyager.jpl.nasa.gov