Planetary Science

NASA Holds Teleconference on Hubble Observations of Jupiter’s Largest Moon

Posted on Updated on

NASA Holds Teleconference on Hubble Observations of Jupiter’s Largest Moon
(March 9, 2015)

Image of Jupiter's moon, GanymedeThis image of Ganymede, one of Jupiter’s moons and the largest moon in our solar system was taken by NASA’s Galileo spacecraft. Image Credit: NASA

NASA will host a teleconference at 11 a.m. EDT on Thursday, March 12, to discuss Hubble Space Telescope’s observations of Ganymede, Jupiter’s largest moon. These results will help scientists in the search for habitable worlds beyond Earth.

Participants in the teleconference will be:

  • Jim Green, director of Planetary Science, NASA Headquarters, Washington
  • Joachim Saur, professor for geophysics, University of Cologne, Germany
  • Jennifer Wiseman, Hubble senior project scientist, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • Heidi Hammel, executive vice president, Association of Universities for Research in Astronomy, Washington

To participate by phone, reporters must contact Felicia Chou at felicia.chou and provide their media affiliation no later than noon Wednesday.

Audio of the teleconference will be streamed live on NASA’s website at:

http://www.nasa.gov/newsaudio

For information about NASA’s Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

For information about our solar system, including Jupiter and Ganymede, visit:

https://solarsystem.nasa.gov/planets/

NASA Spacecraft Becomes First to Orbit a Dwarf Planet

Posted on Updated on

NASA Spacecraft Becomes First to Orbit a Dwarf Planet

Latest News From NASA’s Jet Propulsion Laboratory

NASA’s Dawn spacecraft has become the first mission to achieve orbit around a dwarf planet. The spacecraft was approximately 38,000 miles (61,000) kilometers from Ceres when it was captured by the dwarf planet’s gravity at about 4:39 a.m. PST (7:39 a.m. EST) Friday.Mission controllers at NASA’s Jet Propulsion Laboratory in Pasadena, California received a signal from the spacecraft at 5:36 a.m. PST (8:36 a.m. EST) that Dawn was healthy and thrusting with its ion engine, the indicator Dawn had entered orbit as planned.

“Since its discovery in 1801, Ceres was known as a planet, then an asteroid and later a dwarf planet,” said Marc Rayman, Dawn chief engineer and mission director at JPL. “Now, after a journey of 3.1 billion miles (4.9 billion kilometers) and 7.5 years, Dawn calls Ceres, home.”

In addition to being the first spacecraft to visit a dwarf planet, Dawn also has the distinction of being the first mission to orbit two extraterrestrial targets. From 2011 to 2012, the space-craft explored the giant asteroid Vesta, delivering new insights and thousands of images from that distant world. Ceres and Vesta are the two most massive residents of our solar system’s main asteroid belt between Mars and Jupiter.

The most recent images received from the spacecraft, taken on March 1, show Ceres as a crescent, mostly in shadow because the spacecraft’s trajectory put it on a side of Ceres that faces away from the sun until mid-April. When Dawn emerges from Ceres’ dark side, it will deliver ever-sharper images as it spirals to lower orbits around the planet.

“We feel exhilarated,” said Chris Russell, principal investigator of the Dawn mission at the University of California, Los Angeles (UCLA). “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”

Dawn’s mission is managed by JPL for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

For a complete list of mission participants, visit:

http://dawn.jpl.nasa.gov/mission

For more information about Dawn, visit:

http://www.nasa.gov/dawn

track.php?msgid=155012&act=2FIS&r=17340975&c=1389932

Planet ‘Reared’ by Four Parent Stars

Posted on Updated on

Planet ‘Reared’ by Four Parent Stars

— Astronomers have discovered the second known case of a planet residing in a quadruple star system.

— The planet was known before, but was thought to have only three stars, not four.

— The findings help researchers understand how multiple star systems can influence the development and fate of planets.

Growing up as a planet with more than one parent star has its challenges. Though the planets in our solar system circle just one star — our sun — other more distant planets, called exoplanets, can be reared in families with two or more stars. Researchers wanting to know more about the complex influences of multiple stars on planets have come up with two new case studies: a planet found to have three parents, and another with four.

The discoveries were made using instruments fitted to telescopes at the Palomar Observatory in San Diego: the Robo-AO adaptive optics system, developed by the Inter-University Center for Astronomy and Astrophysics in India and the California Institute of Technology in Pasadena, and the PALM-3000 adaptive optics system, developed by NASA’s Jet Propulsion Laboratory in Pasadena, California, and Caltech.

This is only the second time a planet has been identified in a quadruple star system. While the planet was known before, it was thought to have only three stars, not four. The first four-star planet, KIC 4862625, was discovered in 2013 by citizen scientists using public data from NASA’s Kepler mission.

The latest discovery suggests that planets in quadruple star systems might be less rare than once thought. In fact, recent research has shown that this type of star system, which usually consists of two pairs of twin stars slowly circling each other at great distances, is itself more common than previously believed.

“About four percent of solar-type stars are in quadruple systems, which is up from previous estimates because observational techniques are steadily improving,” said co-author Andrei Tokovinin of the Cerro Tololo Inter-American Observatory in Chile.

The newfound four-star planetary system, called 30 Ari, is located 136 light-years away in the constellation Aries. The system’s gaseous planet is enormous, with 10 times the mass of Jupiter, and it orbits its primary star every 335 days. The primary star has a relatively close partner star, which the planet does not orbit. This pair, in turn, is locked in a long-distance orbit with another pair of stars about 1,670 astronomical units away (an astronomical unit is the distance between Earth and the sun). Astronomers think it’s highly unlikely that this planet, or any moons that might circle it, could sustain life.

Were it possible to see the skies from this world, the four parent stars would look like one small sun and two very bright stars that would be visible in daylight. One of those stars, if viewed with a large enough telescope, would be revealed to be a binary system, or two stars orbiting each other.

In recent years, dozens of planets with two or three parent stars have been found, including those with “Tatooine” sunsets reminiscent of the Star Wars movies. Finding planets with multiple parents isn’t too much of a surprise, considering that binary stars are more common in our galaxy than single stars.

“Star systems come in myriad forms. There can be single stars, binary stars, triple stars, even quintuple star systems,” said Lewis Roberts of JPL, lead author of the new findings appearing in the journal Astronomical Journal. “It’s amazing the way nature puts these things together.”

Roberts and his colleagues want to understand the effects that multiple parent stars can have on their developing youthful planets. Evidence suggests that stellar companions can influence the fate of planets by changing the planets’ orbits and even triggering some to grow more massive. For example, the “hot Jupiters” — planets around the mass of Jupiter that whip closely around their stars in just days — might be gently nudged closer to their primary parent star by the gravitational hand of a stellar companion.

In the new study, the researchers describe using the automated Robo-AO system on Palomar Observatory to scan the night skies, searching hundreds of stars each night for signs of stellar companions. They found two candidates hosting exoplanets: the four-star system 30 Ari, and a triple-star planetary system called HD 2638. The findings were confirmed using the higher-resolution PALM-3000 instrument, also at Palomar Observatory.

The new planet with a trio of stars is a hot Jupiter that circles its primary star tightly, completing one lap every three days. Scientists already knew this primary star was locked in a gravitational tango with another star, about 0.7 light-years away, or 44,000 astronomical units. That’s relatively far apart for a pair of stellar companions. The latest discovery is of a third star in the system, which orbits the primary star from a distance of 28 astronomical units — close enough to have influenced the hot Jupiter’s development and final orbit.

“This result strengthens the connection between multiple star systems and massive planets,” said Roberts.

In the case of Ari 30, the discovery brought the number of known stars in the system from three to four. The fourth star lies at a distance of 23 astronomical units from the planet. While this stellar companion and its planet are closer to each other than those in the HD 2638 system, the newfound star does not appear to have impacted the orbit of the planet. The exact reason for this is uncertain, so the team is planning further observations to better understand the orbit of the star and its complicated family dynamics.

JPL is managed for NASA by the California Institute of Technology in Pasadena.

NASA’s New Horizons Spacecraft Begins First Stages of Pluto Encounter

Posted on Updated on

PRESS RELEASE (NASA/JPL) – NASA’s New Horizons spacecraft recently began its long-awaited, historic encounter with Pluto. The spacecraft is entering the first of several approach phases that culminate July 14 with the first close-up flyby of the dwarf planet, 4.67 billion miles (7.5 billion kilometers) from Earth.

“NASA first mission to distant Pluto will also be humankind’s first close up view of this cold, unexplored world in our solar system,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s Headquarters in Washington. “The New Horizons team worked very hard to prepare for this first phase, and they did it flawlessly.”


NASA’s New Horizons is the first mission to Pluto and the Kuiper Belt of icy, rocky mini-worlds on the solar system’s outer frontier. This animation follows the New Horizons spacecraft as it leaves Earth after its January 2006 launch, through a gravity-assist flyby of Jupiter in February 2007, to the encounter with Pluto and its moons in summer 2015. (Image Credit: NASA/JHUAPL)

The fastest spacecraft when it was launched, New Horizons lifted off in January 2006. It awoke from its final hibernation period last month after a voyage of more than 3 billion miles, and will soon pass close to Pluto, inside the orbits of its five known moons. In preparation for the close encounter, the mission’s science, engineering and spacecraft operations teams configured the piano-sized probe for distant observations of the Pluto system that start Sunday, Jan. 25 with a long-range photo shoot.

The images captured by New Horizons’ telescopic Long-Range Reconnaissance Imager (LORRI) will give mission scientists a continually improving look at the dynamics of Pluto’s moons. The images also will play a critical role in navigating the spacecraft as it covers the remaining 135 million miles (220 million kilometers) to Pluto.

“We’ve completed the longest journey any spacecraft has flown from Earth to reach its primary target, and we are ready to begin exploring,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute in Boulder, Colorado.

LORRI will take hundreds of pictures of Pluto over the next few

Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter. Image Credit: NASA/JHU APL/SwRI
Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter.
Image Credit: NASA/JHU APL/SwRI

months to refine current estimates of the distance between the spacecraft and the dwarf planet. Though the Pluto system will resemble little more than bright dots in the camera’s view until May, mission navigators will use the data to design course-correction maneuvers to aim the spacecraft toward its target point this summer. The first such maneuver could occur as early as March.

“We need to refine our knowledge of where Pluto will be when New Horizons flies past it,” said Mark Holdridge, New Horizons encounter mission manager at Johns Hopkins University’s Applied Physics Laboratory (APL) in Laurel, Maryland. “The flyby timing also has to be exact, because the computer commands that will orient the spacecraft and point the science instruments are based on precisely knowing the time we pass Pluto – which these images will help us determine.”

The “optical navigation” campaign that begins this month marks the first time pictures from New Horizons will be used to help pinpoint Pluto’s location.

Throughout the first approach phase, which runs until spring, New Horizons will conduct a significant amount of additional science. Spacecraft instruments will gather continuous data on the interplanetary environment where the planetary system orbits, including measurements of the high-energy particles streaming from the sun and dust-particle concentrations in the inner reaches of the Kuiper Belt. In addition to Pluto, this area, the unexplored outer region of the solar system, potentially includes thousands of similar icy, rocky small planets.

More intensive studies of Pluto begin in the spring, when the cameras and spectrometers aboard New Horizons will be able to provide image resolutions higher than the most powerful telescopes on Earth. Eventually, the spacecraft will obtain images good enough to map Pluto and its moons more accurately than achieved by previous planetary reconnaissance missions.

APL manages the New Horizons mission for NASA’s Science Mission Directorate in Washington. Alan Stern, of the Southwest Research Institute (SwRI), headquartered in San Antonio, is the principal investigator and leads the mission. SwRI leads the science team, payload operations, and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. APL designed, built and operates the spacecraft.

For more information about the New Horizons mission, visit:
NASA’s New Horizon’s Webpage

NASA’s Pluto–Kuiper Belt Mission Webpage

Dwayne Brown
Headquarters, Washington
202-358-1726
dwayne.c.brown@nasa.gov

Michael Buckley
Johns Hopkins University Applied Physics Laboratory, Laurel, Md.
240-228-7536
michael.buckley@jhuapl.edu

Maria Stothoff
Southwest Research Institute, San Antonio
210-522-3305
maria.stothoff@swri.org

Components of Beagle 2 Flight System on Mars

Posted on Updated on

PRESS RELEASE (JPL) – The Beagle 2 Mars Lander, built by the United Kingdom, has been thought lost on Mars since 2003, but has now been found in images from NASA’s Mars Reconnaissance Orbiter.

Beagle 2 was released by the European Space Agency’s Mars Express orbiter but never heard from after its expected landing. Images from the High Resolution Imaging Science Experiment (HiRISE) camera on Mars Reconnaissance Orbiter have been interpreted as showing the Beagle 2 did make a soft landing and at least partially deployed its solar panels.

A set of three observations with the orbiter’s High Resolution Imaging Science Experiment (HiRISE) camera shows Beagle 2 partially deployed on the surface of the planet, ending the mystery of what happened to the mission more than a decade ago. They show that the lander survived its Dec. 25, 2003, touchdown enough to at least partially deploy its solar arrays.

“I am delighted that Beagle 2 has finally been found on Mars,” said Mark Sims of the University of Leicester, U.K. He was an integral part of the Beagle 2 project from the start, leading the initial study phase and was Beagle 2 mission manager. “Every Christmas Day since 2003 I have wondered what happened to Beagle 2. My Christmas Day in 2003 alongside many others who worked on Beagle 2 was ruined by the disappointment of not receiving data from the surface of Mars. To be frank I had all but given up hope of ever knowing what happened to Beagle 2. The images show that we came so close to achieving the goal of science on Mars.

HiRISE images initially searched by Michael Croon of Trier, Germany, a former member of the European Space Agency’s Mars Express operations team, provide evidence for the lander and key descent components on the surface of Mars within the expected landing area of Isidis Planitia, an impact basin close to the equator.

Subsequent re-imaging and analysis by the Beagle 2 team, the HiRISE team and NASA’s Jet Propulsion Laboratory, Pasadena, California, have confirmed that the targets discovered are of the correct size, shape, color and dispersion to be Beagle 2. JPL planetary geologist Tim Parker, who has assisted in the search and processed some of the images said, “I’ve been looking over the objects in the images carefully, and I’m convinced that these are Beagle 2 hardware.”

Analysis of the images indicates what appears to be a partially deployed configuration, with what is thought to be the rear cover with its pilot/drogue chute (still attached) and main parachute close by. Due to the small size of Beagle 2 (less than 7 feet, or 2 meters across for the deployed lander) it is right at the limit of detection of HiRISE, the highest-resolution camera orbiting Mars. The targets are within the expected landing area at a distance of about three miles (five kilometers) from its center.

“I can imagine the sense of closure that the Beagle 2 team must feel,” said Richard Zurek of JPL, project scientist now for Mars Reconnaissance Orbiter (MRO) and previously for NASA’s still-missing 1998 Mars Polar Lander. “MRO has helped find safe landing sites on Mars for the Curiosity and Phoenix missions and has searched for missing craft to learn what may have gone wrong. It’s an extremely difficult task, as the craft are small and the search areas are vast. It takes the best camera we have in Mars orbit and work by dedicated individuals to be successful at this.”

HiRISE is operated by the University of Arizona, Tucson. The instrument was built by Ball Aerospace & Technologies Corp. of Boulder, Colorado. The Mars Reconnaissance Orbiter Project is managed for NASA’s Science Mission Directorate in Washington, by JPL, a division of the California Institute of Technology, Pasadena.

View all images (color) on JPL site

For more information about HiRISE

Additional information about MRO

Media Contact

Guy Webster
Jet Propulsion Laboratory, Pasadena, California
818-354-6278
guy.webster@jpl.nasa.gov