Space Exploration – Spacecraft
NASA’s OSIRIS-REx Spacecraft Goes for Early Stow of Asteroid Sample
Grey Hautaluoma / Alana Johnson
Headquarters, Washington
Nancy Neal Jones
Goddard Space Flight Center, Greenbelt, Md.
Erin Morton
University of Arizona, Tucson

Credits: NASA/University of Arizona, Tucson
NASA’s OSIRIS-REx mission is ready to perform an early stow on Tuesday, Oct. 27, of the large sample it collected last week from the surface of the asteroid Bennu to protect and return as much of the sample as possible.
On Oct. 22, the OSIRIS-REx mission team received images that showed the spacecraft’s collector head overflowing with material collected from Bennu’s surface – well over the two-ounce (60-gram) mission requirement – and that some of these particles appeared to be slowly escaping from the collection head, called the Touch-And-Go Sample Acquisition Mechanism (TAGSAM).
Read the rest of this entry »Citizen Scientists Discover Dozens of New Cosmic Neighbors in NASA Data

Using a NASA-designed software program, members of the public helped identify a cache of brown dwarfs – sometimes called failed stars – lurking in our cosmic neighborhood.
We’ve never met some of the Sun’s closest neighbors until now. In a new study, astronomers report the discovery of 95 objects known as brown dwarfs, many within a few dozen light-years of the Sun. They’re well outside the solar system, so don’t experience heat from the Sun, but still inhabit a region astronomers consider our cosmic neighborhood. This collection represents some of the coldest known examples of these objects, which are between the sizes of planets and stars.
Members of the public helped make these discoveries through Backyard Worlds: Planet 9, a NASA-funded citizen science project that is a collaboration between volunteers and professional scientists. Backyard Worlds incorporates data from NASA’s Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) satellite along with all-sky observations collected between 2010 and 2011 under its previous moniker,WISE. Data from NASA’s retired Spitzer Space Telescope and the facilities of the National Science Foundation’s NOIRLab were also instrumental in the analysis.
NASA’s InSight Detects First Likely ‘Quake’ on Mars
Dwayne Brown / Alana Johnson
Headquarters, Washington
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
NASA’s Mars InSight lander has measured and recorded for the first time ever a likely “marsquake.”
The faint seismic signal, detected by the lander’s Seismic Experiment for Interior Structure (SEIS) instrument, was recorded on April 6, the lander’s 128th Martian day, or sol. This is the first recorded trembling that appears to have come from inside the planet, as opposed to being caused by forces above the surface, such as wind. Scientists still are examining the data to determine the exact cause of the signal.
NASA Selects New Mission to Explore Origins of Universe
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
Steve Cole
NASA Headquarters, Washington
NASA has selected a new space mission that will help astronomers understand both how our universe evolved and how common are the ingredients for life in our galaxy’s planetary systems.
The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission is a planned two-year mission funded at $242 million (not including launch costs) and targeted to launch in 2023.
NASA’s Voyager 2 Probe Enters Interstellar Space
Dwayne Brown / Karen Fox
NASA Headquarters, Washington
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
For the second time in history, a human-made object has reached the space between the stars. NASA’s Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.
Members of NASA’s Voyager team will discuss the findings at a news conference at 11 a.m. EST (8 a.m. PST) today at the meeting of the American Geophysical Union (AGU) in Washington. The news conference will stream live on the agency’s website.
Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.
What Uranus Cloud Tops Have in Common With Rotten Eggs
Even after decades of observations and a visit by NASA’s Voyager 2 spacecraft, Uranus held on to one critical secret — the composition of its clouds. Now, one of the key components of the planet’s clouds has finally been verified.
A global research team that includes Glenn Orton of NASA’s Jet Propulsion Laboratory in Pasadena, California, has spectroscopically dissected the infrared light from Uranus captured by the 26.25-foot (8-meter) Gemini North telescope on Hawaii’s Mauna Kea. They found hydrogen sulfide, the odiferous gas that most people avoid, in Uranus’ cloud tops. The long-sought evidence was published in the April 23rd issue of the journal Nature Astronomy.
The detection of hydrogen sulfide high in Uranus’ cloud deck (and presumably Neptune’s) is a striking difference from the gas giant planets located closer to the Sun — Jupiter and Saturn — where ammonia is observed above the clouds, but no hydrogen sulfide. These differences in atmospheric composition shed light on questions about the planets’ formation and history.
The Many Faces of Rosetta’s Comet 67P
Markus Bauer
European Space Agency, Noordwijk, Netherlands
M. Ramy El-Maarry
University of Colorado
Matt Taylor
ESA Rosetta project scientist
NOTE: Make sure you check 0ut the accompanying Space Photo Exploration page for Comet 67P/Churyumov-Gerasimenko
Images returned from the European Space Agency’s Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place – full of growing fractures, collapsing cliffs and massive rolling boulders. Moving material buried some features on the comet’s surface while exhuming others. A study on 67P’s changing surface was released Tuesday, March 21, in the journal Science.
“As comets approach the sun, they go into overdrive and exhibit spectacular changes on their surface,” said Ramy El-Maarry, study leader and a member of the U.S. Rosetta science team from the University of Colorado, Boulder. “This is something we were not able to really appreciate before the Rosetta mission, which gave us the chance to look at a comet in ultra-high resolution for more than two years.”
Ultracool Dwarf and the Seven Planets
Dr. Paola Rebusco
MIT – Experimental Study Group
ESON USA
eson-usa@eso.org
Astronomers using the TRAPPIST–South telescope at ESO’s La Silla Observatory, the Very Large Telescope (VLT) at Paranal and the NASA Spitzer Space Telescope, as well as other telescopes around the world [1], have now confirmed the existence of at least seven small planets orbiting the cool red dwarf star TRAPPIST-1 [2]. All the planets, labelled TRAPPIST-1b, c, d, e, f, g and h in order of increasing distance from their parent star, have sizes similar to Earth [3].
Hubble Finds Big Brother of Halley’s Comet – Ripped Apart By White Dwarf
February 9, 2017
European Space Agency News Release
Siyi Xu
European Southern Observatory
Garching bei München, Germany
Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
The international team of astronomers observed the white dwarf WD 1425+540, about 170 light-years from Earth in the constellation Boötes (the Herdsman) [1]. While studying the white dwarf’s atmosphere using both the NASA/ESA Hubble Space Telescope and the W. M. Keck Observatory the team found evidence that an object rather like a massive comet was falling onto the star, getting tidally disrupted while doing so.
The team determined that the object had a chemical composition similar to the famous Halley’s Comet in our own Solar System, but it was 100,000 times more massive and had twice the proportion of water as its local counterpart. Spectral analysis showed that the destroyed object was rich in the elements essential for life, including carbon, oxygen, sulphur and even nitrogen [2].