Space Exploration – Spacecraft

NASA SMAP Observatory Ready for Launch

Posted on Updated on

PRESS RELEASE (JPL) – The launch of NASA’s Soil Moisture Active Passive (SMAP) mission at Vandenberg Air Force Base (VAFB) in California is scheduled for Thursday, Jan. 29. Liftoff from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket is targeted for 6:20:42 a.m. PST (9:20:42 a.m. EST) at the opening of a three-minute launch window. If needed, a backup launch opportunity is available on the Western Range on Jan. 30 with the same launch window.

SMAP is the first U.S. Earth-observing satellite designed to collect global observations of surface soil moisture and its freeze/thaw state. High-resolution space-based measurements of soil moisture and whether the soil is frozen or thawed will give scientists a new capability to better predict natural hazards of extreme weather, climate change, floods and droughts, and will help reduce uncertainties in our understanding of Earth’s water, energy and carbon cycles.

The mission will provide the most accurate and highest-resolution maps of soil moisture ever obtained, mapping the globe every two to three days from space for a least three years. The spacecraft’s final circular polar orbit will be 426 miles (685 kilometers) at an inclination of 98.1 degrees. The spacecraft will orbit Earth once every 98.5 minutes and will repeat the same ground track every eight days.

NASA’s New Horizons Spacecraft Begins First Stages of Pluto Encounter

Posted on Updated on

PRESS RELEASE (NASA/JPL) – NASA’s New Horizons spacecraft recently began its long-awaited, historic encounter with Pluto. The spacecraft is entering the first of several approach phases that culminate July 14 with the first close-up flyby of the dwarf planet, 4.67 billion miles (7.5 billion kilometers) from Earth.

“NASA first mission to distant Pluto will also be humankind’s first close up view of this cold, unexplored world in our solar system,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s Headquarters in Washington. “The New Horizons team worked very hard to prepare for this first phase, and they did it flawlessly.”


NASA’s New Horizons is the first mission to Pluto and the Kuiper Belt of icy, rocky mini-worlds on the solar system’s outer frontier. This animation follows the New Horizons spacecraft as it leaves Earth after its January 2006 launch, through a gravity-assist flyby of Jupiter in February 2007, to the encounter with Pluto and its moons in summer 2015. (Image Credit: NASA/JHUAPL)

The fastest spacecraft when it was launched, New Horizons lifted off in January 2006. It awoke from its final hibernation period last month after a voyage of more than 3 billion miles, and will soon pass close to Pluto, inside the orbits of its five known moons. In preparation for the close encounter, the mission’s science, engineering and spacecraft operations teams configured the piano-sized probe for distant observations of the Pluto system that start Sunday, Jan. 25 with a long-range photo shoot.

The images captured by New Horizons’ telescopic Long-Range Reconnaissance Imager (LORRI) will give mission scientists a continually improving look at the dynamics of Pluto’s moons. The images also will play a critical role in navigating the spacecraft as it covers the remaining 135 million miles (220 million kilometers) to Pluto.

“We’ve completed the longest journey any spacecraft has flown from Earth to reach its primary target, and we are ready to begin exploring,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute in Boulder, Colorado.

LORRI will take hundreds of pictures of Pluto over the next few

Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter. Image Credit: NASA/JHU APL/SwRI
Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter.
Image Credit: NASA/JHU APL/SwRI

months to refine current estimates of the distance between the spacecraft and the dwarf planet. Though the Pluto system will resemble little more than bright dots in the camera’s view until May, mission navigators will use the data to design course-correction maneuvers to aim the spacecraft toward its target point this summer. The first such maneuver could occur as early as March.

“We need to refine our knowledge of where Pluto will be when New Horizons flies past it,” said Mark Holdridge, New Horizons encounter mission manager at Johns Hopkins University’s Applied Physics Laboratory (APL) in Laurel, Maryland. “The flyby timing also has to be exact, because the computer commands that will orient the spacecraft and point the science instruments are based on precisely knowing the time we pass Pluto – which these images will help us determine.”

The “optical navigation” campaign that begins this month marks the first time pictures from New Horizons will be used to help pinpoint Pluto’s location.

Throughout the first approach phase, which runs until spring, New Horizons will conduct a significant amount of additional science. Spacecraft instruments will gather continuous data on the interplanetary environment where the planetary system orbits, including measurements of the high-energy particles streaming from the sun and dust-particle concentrations in the inner reaches of the Kuiper Belt. In addition to Pluto, this area, the unexplored outer region of the solar system, potentially includes thousands of similar icy, rocky small planets.

More intensive studies of Pluto begin in the spring, when the cameras and spectrometers aboard New Horizons will be able to provide image resolutions higher than the most powerful telescopes on Earth. Eventually, the spacecraft will obtain images good enough to map Pluto and its moons more accurately than achieved by previous planetary reconnaissance missions.

APL manages the New Horizons mission for NASA’s Science Mission Directorate in Washington. Alan Stern, of the Southwest Research Institute (SwRI), headquartered in San Antonio, is the principal investigator and leads the mission. SwRI leads the science team, payload operations, and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. APL designed, built and operates the spacecraft.

For more information about the New Horizons mission, visit:
NASA’s New Horizon’s Webpage

NASA’s Pluto–Kuiper Belt Mission Webpage

Dwayne Brown
Headquarters, Washington
202-358-1726
dwayne.c.brown@nasa.gov

Michael Buckley
Johns Hopkins University Applied Physics Laboratory, Laurel, Md.
240-228-7536
michael.buckley@jhuapl.edu

Maria Stothoff
Southwest Research Institute, San Antonio
210-522-3305
maria.stothoff@swri.org

Components of Beagle 2 Flight System on Mars

Posted on Updated on

PRESS RELEASE (JPL) – The Beagle 2 Mars Lander, built by the United Kingdom, has been thought lost on Mars since 2003, but has now been found in images from NASA’s Mars Reconnaissance Orbiter.

Beagle 2 was released by the European Space Agency’s Mars Express orbiter but never heard from after its expected landing. Images from the High Resolution Imaging Science Experiment (HiRISE) camera on Mars Reconnaissance Orbiter have been interpreted as showing the Beagle 2 did make a soft landing and at least partially deployed its solar panels.

A set of three observations with the orbiter’s High Resolution Imaging Science Experiment (HiRISE) camera shows Beagle 2 partially deployed on the surface of the planet, ending the mystery of what happened to the mission more than a decade ago. They show that the lander survived its Dec. 25, 2003, touchdown enough to at least partially deploy its solar arrays.

“I am delighted that Beagle 2 has finally been found on Mars,” said Mark Sims of the University of Leicester, U.K. He was an integral part of the Beagle 2 project from the start, leading the initial study phase and was Beagle 2 mission manager. “Every Christmas Day since 2003 I have wondered what happened to Beagle 2. My Christmas Day in 2003 alongside many others who worked on Beagle 2 was ruined by the disappointment of not receiving data from the surface of Mars. To be frank I had all but given up hope of ever knowing what happened to Beagle 2. The images show that we came so close to achieving the goal of science on Mars.

HiRISE images initially searched by Michael Croon of Trier, Germany, a former member of the European Space Agency’s Mars Express operations team, provide evidence for the lander and key descent components on the surface of Mars within the expected landing area of Isidis Planitia, an impact basin close to the equator.

Subsequent re-imaging and analysis by the Beagle 2 team, the HiRISE team and NASA’s Jet Propulsion Laboratory, Pasadena, California, have confirmed that the targets discovered are of the correct size, shape, color and dispersion to be Beagle 2. JPL planetary geologist Tim Parker, who has assisted in the search and processed some of the images said, “I’ve been looking over the objects in the images carefully, and I’m convinced that these are Beagle 2 hardware.”

Analysis of the images indicates what appears to be a partially deployed configuration, with what is thought to be the rear cover with its pilot/drogue chute (still attached) and main parachute close by. Due to the small size of Beagle 2 (less than 7 feet, or 2 meters across for the deployed lander) it is right at the limit of detection of HiRISE, the highest-resolution camera orbiting Mars. The targets are within the expected landing area at a distance of about three miles (five kilometers) from its center.

“I can imagine the sense of closure that the Beagle 2 team must feel,” said Richard Zurek of JPL, project scientist now for Mars Reconnaissance Orbiter (MRO) and previously for NASA’s still-missing 1998 Mars Polar Lander. “MRO has helped find safe landing sites on Mars for the Curiosity and Phoenix missions and has searched for missing craft to learn what may have gone wrong. It’s an extremely difficult task, as the craft are small and the search areas are vast. It takes the best camera we have in Mars orbit and work by dedicated individuals to be successful at this.”

HiRISE is operated by the University of Arizona, Tucson. The instrument was built by Ball Aerospace & Technologies Corp. of Boulder, Colorado. The Mars Reconnaissance Orbiter Project is managed for NASA’s Science Mission Directorate in Washington, by JPL, a division of the California Institute of Technology, Pasadena.

View all images (color) on JPL site

For more information about HiRISE

Additional information about MRO

Media Contact

Guy Webster
Jet Propulsion Laboratory, Pasadena, California
818-354-6278
guy.webster@jpl.nasa.gov

Technology Innovations Spin NASA’s SMAP into Space

Posted on Updated on

It’s active. It’s passive. And it’s got a big, spinning lasso.

Scheduled for launch on Jan. 29, 2015, NASA’s Soil Moisture Active Passive (SMAP) instrument will measure the moisture lodged in Earth’s soils with an unprecedented accuracy and resolution. The instrument’s three main parts are a radar, a radiometer and the largest rotating mesh antenna ever deployed in space.

Remote sensing instruments are called “active” when they emit their own signals and “passive” when they record signals that already exist. The mission’s science instrument ropes together a sensor of each type to corral the highest-resolution, most accurate measurements ever made of soil moisture — a tiny fraction of Earth’s water that has a disproportionately large effect on weather and agriculture.

To enable the mission to meet its accuracy needs while covering the globe every three days or less, SMAP engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, designed and built the largest rotating antenna that could be stowed into a space of only one foot by four feet (30 by 120 centimeters) for launch. The dish is 19.7 feet (6 meters) in diameter.

“We call it the spinning lasso,” said Wendy Edelstein of NASA’s Jet Propulsion Laboratory, Pasadena, California, the SMAP instrument manager.

Like the cowboy’s lariat, the antenna is attached on one side to an arm with a crook in its elbow. It spins around the arm at about 14 revolutions per minute (one complete rotation every four seconds). The antenna dish was provided by Northrop Grumman Astro Aerospace in Carpinteria, California. The motor that spins the antenna was provided by the Boeing Company in El Segundo, California.

“The antenna caused us a lot of angst, no doubt about it,” Edelstein noted. Although the antenna must fit during launch into a space not much bigger than a tall kitchen trash can, it must unfold so precisely that the surface shape of the mesh is accurate within about an eighth of an inch (a few millimeters).

The mesh dish is edged with a ring of lightweight graphite supports that stretch apart like a baby gate when a single cable is pulled, drawing the mesh outward. “Making sure we don’t have snags, that the mesh doesn’t hang up on the supports and tear when it’s deploying — all of that requires very careful engineering,” Edelstein said. “We test, and we test, and we test some more. We have a very stable and robust system now.”

SMAP’s radar, developed and built at JPL, uses the antenna to transmit microwaves toward Earth and receive the signals that bounce back, called backscatter. The microwaves penetrate a few inches or more into the soil before they rebound. Changes in the electrical properties of the returning microwaves indicate changes in soil moisture, and also tell whether or not the soil is frozen. Using a complex technique called synthetic aperture radar processing, the radar can produce ultra-sharp images with a resolution of about half a mile to a mile and a half (one to three kilometers).

SMAP’s radiometer detects differences in Earth’s natural emissions of microwaves that are caused by water in soil. To address a problem that has seriously hampered earlier missions using this kind of instrument to study soil moisture, the radiometer designers at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, developed and built one of the most sophisticated signal-processing systems ever created for such a scientific instrument.

The problem is radio frequency interference. The microwave wavelengths that SMAP uses are officially reserved for scientific use, but signals at nearby wavelengths that are used for air traffic control, cell phones and other purposes spill over into SMAP’s wavelengths unpredictably. Conventional signal processing averages data over a long time period, which means that even a short burst of interference skews the record for that whole period. The Goddard engineers devised a new way to delete only the small segments of actual interference, leaving much more of the observations untouched.

Combining the radar and radiometer signals allows scientists to take advantage of the strengths of both technologies while working around their weaknesses. “The radiometer provides more accurate soil moisture but a coarse resolution of about 40 kilometers [25 miles] across,” said JPL’s Eni Njoku, a research scientist with SMAP. “With the radar, you can create very high resolution, but it’s less accurate. To get both an accurate and a high-resolution measurement, we process the two signals together.”

SMAP will be the fifth NASA Earth science mission launched within the last 12 months.

For more about the SMAP mission, visit:

http://www.nasa.gov/smap/

NASA monitors Earth’s vital signs from space, air and land with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA’s Earth science activities this year, visit:

http://www.nasa.gov/earthrightnow

Media Contact

Alan Buis
Jet Propulsion Laboratory, Pasadena, California
818-354-0474
Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen
NASA Earth Science News Team

2014-444

Dawn Spacecraft Begins Approach to Dwarf Planet Ceres

Posted on Updated on

 

• Dawn has entered its approach phase toward Ceres
• The spacecraft will arrive at Ceres on March 6, 2015

PRESS RELEASE (NASA/JPL) – NASA’s Dawn spacecraft has entered an approach phase in which it will continue to close in on Ceres, a Texas-sized dwarf planet never before visited by a spacecraft. Dawn launched in 2007 and is scheduled to enter Ceres orbit in March 2015.

Dawn recently emerged from solar conjunction, in which the spacecraft is on the opposite side of the sun, limiting communication with antennas on Earth. Now that Dawn can reliably communicate with Earth again, mission controllers have programmed the maneuvers necessary for the next stage of the rendezvous, which they label the Ceres approach phase. Dawn is currently 400,000 miles (640,000 kilometers) from Ceres, approaching it at around 450 miles per hour (725 kilometers per hour).

The spacecraft’s arrival at Ceres will mark the first time that a spacecraft has ever orbited two solar system targets. Dawn previously explored the protoplanet Vesta for 14 months, from 2011 to 2012, capturing detailed images and data about that body.

“Ceres is almost a complete mystery to us,” said Christopher Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “Ceres, unlike Vesta, has no meteorites linked to it to help reveal its secrets. All we can predict with confidence is that we will be surprised.”

The two planetary bodies are thought to be different in a few important ways. Ceres may have formed later than Vesta, and with a cooler interior. Current evidence suggests that Vesta only retained a small amount of water because it formed earlier, when radioactive material was more abundant, which would have produced more heat. Ceres, in contrast, has a thick ice mantle and may even have an ocean beneath its icy crust.

Ceres, with an average diameter of 590 miles (950 kilometers), is also the largest body in the asteroid belt, the strip of solar system real estate between Mars and Jupiter. By comparison, Vesta has an average diameter of 326 miles (525 kilometers), and is the second most massive body in the belt.

The spacecraft uses ion propulsion to traverse space far more efficiently than if it used chemical propulsion. In an ion propulsion engine, an electrical charge is applied to xenon gas, and charged metal grids accelerate the xenon particles out of the thruster. These particles push back on the thruster as they exit, creating a reaction force that propels the spacecraft. Dawn has now completed five years of accumulated thrust time, far more than any other spacecraft.

“Orbiting both Vesta and Ceres would be truly impossible with conventional propulsion. Thanks to ion propulsion, we’re about to make history as the first spaceship ever to orbit two unexplored alien worlds,” said Marc Rayman, Dawn’s chief engineer and mission director, based at NASA’s Jet Propulsion Laboratory in Pasadena, California.

The next couple of months promise continually improving views of Ceres, prior to Dawn’s arrival. By the end of January, the spacecraft’s images and other data will be the best ever taken of the dwarf planet.

The Dawn mission to Vesta and Ceres is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA’s Science Mission Directorate, Washington. UCLA is responsible for overall Dawn mission science.

More information about Dawn:

http://dawn.jpl.nasa.gov
Media Contact

Elizabeth Landau
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6425
Elizabeth.Landau@jpl.nasa.gov

2014-443

Rosetta comet probe team narrows landing site to five locations

Posted on Updated on

This annotated image depicts four of the five potential landing sites for the Rosetta mission's Philae lander.
This annotated image depicts four of the five potential landing sites for the Rosetta mission’s Philae lander (Courtesy NASA/JPL-Caltech, Image by ESA/Rosetta/MPS for OSIRIS Team).

The European Space Agency’s Rosetta Comet mission has chosen five likely landing sites for its Philae’s lander on comet 67P/Churyumov-Gerasimenko. The lander is scheduled to descend down to the comet’s nucleus in November.

According to a press release by NASA’s Jet Propulsion Laboratory:

Rosetta is an international mission headed up by the ESA with support from NASA, and will be the first ever attempt to land on a comet.

Rosetta is an international mission headed up by the ESA with support from NASA, including providing instruments.

 The European Space Agency’s Rosetta mission has chosen five candidate landing sites on comet 67P/Churyumov-Gerasimenko for its Philae lander. Philae’s descent to the comet’s nucleus, scheduled for this November, will be the first such landing ever attempted. Rosetta is an international mission spearheaded by the European Space Agency with support and instruments provided by NASA.
Picking the landing site is complex and a balancing the technical issues of the orbiter and lander during the entire phases of separation, descent, landing, and all operations on the surface must be precise.

Due to the distance from Earth and the orbiter and lander creates uncertainties in navigating the orbiter close to the comet, the only way possible to pick a landing site in terms of an ellipse, which will cover up to six-tenths of a square mile (or one square kilometer) where the Philae lander might land.

“This is the first time landing sites on a comet have been considered,” said Stephan Ulamec, Philae Lander Manager at the German Aerospace Center, Cologne, Germany in a press release.

“The candidate sites that we want to follow up for further analysis are thought to be technically feasible on the basis of a preliminary analysis of flight dynamics and other key issues – for example, they all provide at least six hours of daylight per comet rotation and offer some flat terrain. Of course, every site has the potential for unique scientific discoveries.”
 For each possible zone, important questions must be asked:

Will the lander be able to maintain regular communications with Rosetta?

 How common are surface hazards such as large boulders, deep crevasses or steep slopes?

Is there sufficient illumination for scientific operations and enough sunlight to recharge the lander’s batteries beyond its initial 64-hour lifetime without causing overheating?

The team reduced the number of landing sites from 10 to five, and gave them letters that have no special meanings.

 Three of the landing sites (B, I and J) are on the smaller lobe of the comet, where the other two sites (A and C) are located on the larger lobe.

“The process of selecting a landing site is extremely complex and dynamic; as we get closer to the comet, we will see more and more details, which will influence the final decision on where and when we can land,” said Fred Jansen, Rosetta’s mission manager from the European Space Agency’s Science and Technology Centre in Noordwijk, The Netherlands, in the same press release.

 “We had to complete our preliminary analysis on candidate sites very quickly after arriving at the comet, and now we have just a few more weeks to determine the primary site. The clock is ticking and we now have to meet the challenge to pick the best possible landing site.”
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet...
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet’s nucleus. It was taken by the Rosetta spacecraft’s navigation camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus. Courtesy NASA/JPL-Caltech, Image by ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DAS
 The next thing the team must do is to prepare a comprehensive analysis of each of the five landing sites so they can determine the best orbital and operational strategies that could be used so Rosetta can deliver the lander to any one of them.

During the time the team is preparing their analysis, Rosetta will move to 31 miles (50 kilometers) of the comet allowing more detailed study of the five landing sites.

 The Rosetta team will have the complete assessments of all five landing sites completed by September 14, and they will be ranked in order to select a primary landing site, with both a full detailed strategy for landing the orbiter at the primary or selected site, along with a backup contingency.

The ESA Rosetta team plans to land the Philae lander sometime around mid-November when the comet will be about 280 million miles (450 million Kilometers). This means the comet will be three times the distance than the Earth is to the Sun (280 million miles also equals 3 astronomical units, where an astronomical unit is 93 million miles, or the distance between the Sun and the Earth).

At 3 AU, there should be little to no activity on the comet that would jeopardize the landing of the Philae lander on the comet’s surface, and just before the comet becomes active.

Launched in March 2004, Rosetta was reactivated in January 2014 after a record 957 days in hibernation. Composed of an orbiter and lander, Rosetta’s objectives since arriving at comet 67P/Churyumov-Gerasimenko earlier this month are to study the celestial object up close in unprecedented detail, prepare for landing a probe on the comet’s nucleus in November, and track its changes through 2015, as it sweeps past the sun.

Illustration of comet-seeker Rosetta with details of its progress
Illustration of comet-seeker Rosetta with details of its progress (AFP/File – P. Pizarro/A. Bommenel/K. Tian)
 Rosetta’s objectives as the spacecraft reached comet 67P/Churyumov-Gerasimenko earlier this month is to do a close up study of the comet in unprecedented detail and to prepare for landing the probe on the comet’s nucleus and track any changes through 2015 as it orbits comet 67P/Churyumov-Gerasimenko.

Cosmologists consider comets as time capsules containing materials left over from building of the Solar System 3.4 billion years ago. Rosetta’s lander will obtain the very first images taken from a comet’s primordial composition by drilling into the surface.

 Scientists will also be able to study how a comet changes its composition as it makes its way around the Sun. It is believed this will help scientists to understand more about the role of comets may have played in seeding the Earth with water, and even life. They will also be able to learn more about the evolution of our Solar System.

According to the press release:

 The scientific imaging system, OSIRIS, was built by a consortium led by the Max Planck Institute for Solar System Research (Germany) in collaboration with Center of Studies and Activities for Space, University of Padua (Italy), the Astrophysical Laboratory of Marseille (France), the Institute of Astrophysics of Andalusia, CSIC (Spain), the Scientific Support Office of the European Space Agency (Netherlands), the National Institute for Aerospace Technology (Spain), the Technical University of Madrid (Spain), the Department of Physics and Astronomy of Uppsala University (Sweden) and the Institute of Computer and Network Engineering of the TU Braunschweig (Germany). OSIRIS was financially supported by the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain, and Sweden and the ESA Technical Directorate.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta’s Philae lander is provided by a consortium led by the German Aerospace Center, Cologne; Max Planck Institute for Solar System Research, Gottingen; French National Space Agency, Paris; and the Italian Space Agency, Rome. NASA’s Jet Propulsion Laboratory in Pasadena, California, a division of the California Institute of Technology, manages the U.S. participation in the Rosetta mission for NASA’s Science Mission Directorate in Washington.

For Specifications on: 67P/Churyumov-Gerasimenko