Space Missions

New Organic Compounds Found in Enceladus Ice Grains

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
gretchen.p.mccartney@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

PIA09761_hires
In this image captured by NASA’s Cassini spacecraft in 2007, the plumes of Enceladus are clearly visible. The moon is nearly in front of the Sun from Cassini’s viewpoint.Credit: NASA/JPL/Space Science Institute

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn’s moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA’s Cassini mission.

Powerful hydrothermal vents eject material from Enceladus’ core, which mixes with water from the moon’s massive subsurface ocean before it is released into space as water vapor and ice grains. The newly discovered molecules, condensed onto the ice grains, were determined to be nitrogen- and oxygen-bearing compounds.

Read the rest of this entry »

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
gretchen.p.mccartney@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

PIA09761_hires
In this image captured by NASA’s Cassini spacecraft in 2007, the plumes of Enceladus are clearly visible. The moon is nearly in front of the Sun from Cassini’s viewpoint.Credit: NASA/JPL/Space Science Institute

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn’s moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA’s Cassini mission.

Powerful hydrothermal vents eject material from Enceladus’ core, which mixes with water from the moon’s massive subsurface ocean before it is released into space as water vapor and ice grains. The newly discovered molecules, condensed onto the ice grains, were determined to be nitrogen- and oxygen-bearing compounds.

Read the rest of this entry »

Study Finds New Wrinkles on Earth’s Moon

Posted on Updated on

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
andrew.c.good@jpl.nasa.gov

 

New surface features of the Moon have been discovered in a region called Mare Frigoris, outlined here in teal. This image is a mosaic composed of many images taken by NASA’s Lunar Reconnaissance Orbiter (LRO).Credit: NASA

 

Billions of years ago, Earth’s Moon formed vast basins called “mare” (pronounced MAR-ay). Scientists have long assumed these basins were dead, still places where the last geologic activity occurred long before dinosaurs roamed Earth.

But a survey of more than 12,000 images reveals that at least one lunar mare has been cracking and shifting as much as other parts of the Moon – and may even be doing so today. The study adds to a growing understanding that the Moon is an actively changing world.

Read the rest of this entry »

Black Hole Image Makes History

Posted on Updated on

Elizabeth Landau

NASA Headquarters, Washington

 

 

Scientists have obtained the first image of a black hole, using Event Horizon Telescope observations of the center of the galaxy M87. The image shows a bright ring formed as light bends in the intense gravity around a black hole that is 6.5 billion times more massive than the Sun. Credit: Event Horizon Telescope Collaboration

 

 

A black hole and its shadow have been captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

 

A black hole is an extremely dense object from which no light can escape. Anything that comes within a black hole’s “event horizon,” its point of no return, will be consumed, never to re-emerge, because of the black hole’s unimaginably strong gravity. By its very nature, a black hole cannot be seen, but the hot disk of material that encircles it shines bright. Against a bright backdrop, such as this disk, a black hole appears to cast a shadow.


 

Read the rest of this entry »

NASA Selects New Mission to Explore Origins of Universe

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.

Steve Cole 
NASA Headquarters, Washington 

 

NASA’s Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission is targeted to launch in 2023. SPHEREx will help astronomers understand both how our universe evolved and how common are the ingredients for life in our galaxy’s planetary systems. Credits: Caltech

 

NASA has selected a new space mission that will help astronomers understand both how our universe evolved and how common are the ingredients for life in our galaxy’s planetary systems.

The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission is a planned two-year mission funded at $242 million (not including launch costs) and targeted to launch in 2023.  

 

Read the rest of this entry »

NASA’s Cassini Data Show Saturn’s Rings Relatively New

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.

JoAnna Wendel
NASA Headquarters, Washington DC


An artist’s concept of the Cassini orbiter crossing Saturn’s ring plane. New measurements of the rings’ mass give scientists the best answer yet to the question of their age. Credit: NASA/JPL-Caltech

 

The rings of Saturn may be iconic, but there was a time when the majestic gas giant existed without its distinctive halo. In fact, the rings may have formed much later than the planet itself, according to a new analysis of gravity science data from NASA’s Cassini spacecraft. 

The findings indicate that Saturn’s rings formed between 10 million and 100 million years ago. From our planet’s perspective, that means Saturn’s rings may have formed during the age of dinosaurs. 

The conclusions of the research – gleaned from measurements collected during the final, ultra-close orbits Cassini performed in 2017 as the spacecraft neared the end of its mission – are the best answer yet to a longstanding question in solar system science. The findings were published online Jan. 17 in Science.

 

Read the rest of this entry »

Scientists Finally Know What Time It Is on Saturn

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif. 

JoAnna Wendel 
NASA Headquarters, Washington DC

 

A view from NASA’s Cassini spacecraft shows Saturn’s northern hemisphere in 2016 as that part of the planet nears its northern hemisphere summer solstice. A year on Saturn is 29 Earth years; days only last 10:33:38, according to a new analysis of Cassini data. Credit: NASA/JPL-Caltech/Space Science Institute

 

Using new data from NASA’s Cassini spacecraft, researchers believe they have solved a longstanding mystery of solar system science: the length of a day on Saturn. It’s 10 hours, 33 minutes and 38 seconds. 

The figure has eluded planetary scientists for decades, because the gas giant has no solid surface with landmarks to track as it rotates, and it has an unusual magnetic field that hides the planet’s rotation rate.

The answer, it turned out, was hidden in the rings. 

 

Read the rest of this entry »

The Coolest Experiment in the Universe

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.

 

Cold Atom Laboratory (CAL) physicist David Aveline works in the CAL test bed Shown here is theInternational Space Station Cold Atom Laboratory (CAL) Cold Atom Laboratory Astronaut Ricky Arnold assists with the installation of NASA’s Cold Atom Laboratory The International Space Station, shown here in 2018, is home to many scientific experiments, including NASA’s Cold Atom Laboratory. Credit: NASA

 

The Cold Atom Laboratory (CAL) consists of two standardized containers that will be installed on the International Space Station. The larger container holds CAL’s physics package, or the compartment where CAL will produce clouds of ultracold atoms. Credit: NASA/JPL-Caltech

What’s the coldest place you can think of? Temperatures on a winter day in Antarctica dip as low as -120ºF (-85ºC). On the dark side of the Moon, they hit -280ºF (-173ºC). But inside NASA’s Cold Atom Laboratory on the International Space Station, scientists are creating something even colder.

The Cold Atom Lab (CAL) is the first facility in orbit to produce clouds of “ultracold” atoms, which can reach a fraction of a degree above absolute zero: -459ºF (-273ºC), the absolute coldest temperature that matter can reach. Nothing in nature is known to hit the temperatures achieved in laboratories like CAL, which means the orbiting facility is regularly the coldest known spot in the universe.

 NASA’s Cold Atom Laboratory on the International Space Station is regularly the coldest known spot in the universe. But why are scientists producing clouds of atoms a fraction of a degree above absolute zero? And why do they need to do it in space? Quantum physics, of course.

USeven months after its May 21, 2018, launch to the space station from NASA’s Wallops Flight Facility in Virginia, CAL is producing ultracold atoms daily. Five teams of scientists will carry out experiments on CAL during its first year, and three experiments are already underway. 

 

Read the rest of this entry »

NASA’s Juno Spacecraft Set for Fifth Jupiter Flyby

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington

 

This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian “galaxy” of swirling storms. Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

 

NASA’s Juno spacecraft will make its fifth flyby over Jupiter’s mysterious cloud tops on Monday, March 27, at 1:52 a.m. PDT (4:52 a.m. EDT, 8:52 UTC).

At the time of closest approach (called perijove), Juno will be about 2,700 miles (4,400 kilometers) above the planet’s cloud tops, traveling at a speed of about 129,000 miles per hour (57.8 kilometers per second) relative to the gas-giant planet. All of Juno’s eight science instruments will be on and collecting data during the flyby.


Read the rest of this entry »

Experiments Show Titan Lakes May Fizz with Nitrogen

Posted on Updated on

Preston Dyches
Jet Propulsion Laboratory, Pasadena, Calif.

 

Radar images from Cassini showed a strange island-like feature in one of Titan’s hydrocarbon seas that appeared to change over time (series of images at left). One possible explanation for this “magic island” is bubbles. Image Credit: NASA/JPL-Caltech/Space Science Institute

 

A recent NASA-funded study has shown how the hydrocarbon lakes and seas of Saturn’s moon Titan might occasionally erupt with dramatic patches of bubbles.

For the study, researchers at NASA’s Jet Propulsion Laboratory in Pasadena, California, simulated the frigid surface conditions on Titan, finding that significant amounts of nitrogen can be dissolved in the extremely cold liquid methane that rains from the skies and collects in rivers, lakes and seas. They demonstrated that slight changes in temperature, air pressure or composition can cause the nitrogen to rapidly separate out of solution, like the fizz that results when opening a bottle of carbonated soda.

NASA’s Cassini spacecraft has found that the composition of Titan’s lakes and seas varies from place to place, with some reservoirs being richer in ethane than methane. “Our experiments showed that when methane-rich liquids mix with ethane-rich ones — for example from a heavy rain, or when runoff from a methane river mixes into an ethane-rich lake — the nitrogen is less able to stay in solution,” said Michael Malaska of JPL, who led the study.


Read the rest of this entry »

If You are Sad About Pluto, How About 110 Planets In Our Solar System?

Posted on Updated on

Article written by Matt Williams
Published on Universe Today
February 21, 2017  

Under a size cutoff of 10,000 kilometers, there are two planets, 18 or 19 moons, 1 or 2 asteroids, and 87 trans-Neptunian objects, most of which do not yet have names. All are shown to scale, keeping in mind that for most of the trans-Neptunian objects, their sizes are only approximately known. Montage by Emily Lakdawalla. Data from NASA / JPL, JHUAPL/SwRI, SSI, and UCLA / MPS / DLR / IDA, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, Roman Tkachenko, and Emily Lakdawalla.

 

In 2006, during their 26th General Assembly, the International Astronomical Union (IAU) adopted a formal definition of the term “planet”. This was done in the hopes of dispelling ambiguity over which bodies should be designated as “planets”, an issue that had plagued astronomers ever since they discovered objects beyond the orbit of Neptune that were comparable in size to Pluto. 

Needless to say, the definition they adopted resulted in fair degree of controversy from the astronomical community. For this reason, a team of planetary scientists – which includes famed “Pluto defender” Alan Stern – have come together to propose a new meaning for the term “planet”. Based on their geophysical definition, the term would apply to over 100 bodies in the Solar System, including the Moon itself.


Read the complete article at the Universe Today website: SAD ABOUT PLUTO? HOW ABOUT 110 PLANETS IN THE SOLAR SYSTEM INSTEAD?   

 

Read more articles by Matt Williams

Read all the articles at Universe Today



By  
  –             
Matt Williams is the Curator of the Guide to Space for Universe Today, a regular contributor to HeroX, a science fiction author, and a Taekwon-Do instructor. He lives with his family on Vancouver Island in beautiful BC.

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License