Cassini Spacecraft

New Organic Compounds Found in Enceladus Ice Grains

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
gretchen.p.mccartney@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

PIA09761_hires
In this image captured by NASA’s Cassini spacecraft in 2007, the plumes of Enceladus are clearly visible. The moon is nearly in front of the Sun from Cassini’s viewpoint.Credit: NASA/JPL/Space Science Institute

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn’s moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA’s Cassini mission.

Powerful hydrothermal vents eject material from Enceladus’ core, which mixes with water from the moon’s massive subsurface ocean before it is released into space as water vapor and ice grains. The newly discovered molecules, condensed onto the ice grains, were determined to be nitrogen- and oxygen-bearing compounds.

Read the rest of this entry »

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
gretchen.p.mccartney@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

PIA09761_hires
In this image captured by NASA’s Cassini spacecraft in 2007, the plumes of Enceladus are clearly visible. The moon is nearly in front of the Sun from Cassini’s viewpoint.Credit: NASA/JPL/Space Science Institute

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn’s moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA’s Cassini mission.

Powerful hydrothermal vents eject material from Enceladus’ core, which mixes with water from the moon’s massive subsurface ocean before it is released into space as water vapor and ice grains. The newly discovered molecules, condensed onto the ice grains, were determined to be nitrogen- and oxygen-bearing compounds.

Read the rest of this entry »

NASA’s Cassini Data Show Saturn’s Rings Relatively New

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.

JoAnna Wendel
NASA Headquarters, Washington DC


An artist’s concept of the Cassini orbiter crossing Saturn’s ring plane. New measurements of the rings’ mass give scientists the best answer yet to the question of their age. Credit: NASA/JPL-Caltech

 

The rings of Saturn may be iconic, but there was a time when the majestic gas giant existed without its distinctive halo. In fact, the rings may have formed much later than the planet itself, according to a new analysis of gravity science data from NASA’s Cassini spacecraft. 

The findings indicate that Saturn’s rings formed between 10 million and 100 million years ago. From our planet’s perspective, that means Saturn’s rings may have formed during the age of dinosaurs. 

The conclusions of the research – gleaned from measurements collected during the final, ultra-close orbits Cassini performed in 2017 as the spacecraft neared the end of its mission – are the best answer yet to a longstanding question in solar system science. The findings were published online Jan. 17 in Science.

 

Read the rest of this entry »

Scientists Finally Know What Time It Is on Saturn

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif. 

JoAnna Wendel 
NASA Headquarters, Washington DC

 

A view from NASA’s Cassini spacecraft shows Saturn’s northern hemisphere in 2016 as that part of the planet nears its northern hemisphere summer solstice. A year on Saturn is 29 Earth years; days only last 10:33:38, according to a new analysis of Cassini data. Credit: NASA/JPL-Caltech/Space Science Institute

 

Using new data from NASA’s Cassini spacecraft, researchers believe they have solved a longstanding mystery of solar system science: the length of a day on Saturn. It’s 10 hours, 33 minutes and 38 seconds. 

The figure has eluded planetary scientists for decades, because the gas giant has no solid surface with landmarks to track as it rotates, and it has an unusual magnetic field that hides the planet’s rotation rate.

The answer, it turned out, was hidden in the rings. 

 

Read the rest of this entry »

Experiments Show Titan Lakes May Fizz with Nitrogen

Posted on Updated on

Preston Dyches
Jet Propulsion Laboratory, Pasadena, Calif.

 

Radar images from Cassini showed a strange island-like feature in one of Titan’s hydrocarbon seas that appeared to change over time (series of images at left). One possible explanation for this “magic island” is bubbles. Image Credit: NASA/JPL-Caltech/Space Science Institute

 

A recent NASA-funded study has shown how the hydrocarbon lakes and seas of Saturn’s moon Titan might occasionally erupt with dramatic patches of bubbles.

For the study, researchers at NASA’s Jet Propulsion Laboratory in Pasadena, California, simulated the frigid surface conditions on Titan, finding that significant amounts of nitrogen can be dissolved in the extremely cold liquid methane that rains from the skies and collects in rivers, lakes and seas. They demonstrated that slight changes in temperature, air pressure or composition can cause the nitrogen to rapidly separate out of solution, like the fizz that results when opening a bottle of carbonated soda.

NASA’s Cassini spacecraft has found that the composition of Titan’s lakes and seas varies from place to place, with some reservoirs being richer in ethane than methane. “Our experiments showed that when methane-rich liquids mix with ethane-rich ones — for example from a heavy rain, or when runoff from a methane river mixes into an ethane-rich lake — the nitrogen is less able to stay in solution,” said Michael Malaska of JPL, who led the study.


Read the rest of this entry »

Water Vapor Plumes Discovered on Jupiter’s Moon Europa

Posted on Updated on

Written by George McGinn
Cosmology and Space Research
September 27, 2016 at 4:32pm EST

This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by NASA’s Hubble’s Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. Hubble’s ultraviolet sensitivity allowed for the features — rising over 100 miles (160 kilometers) above Europa’s icy surface — to be discerned. The water is believed to come from a subsurface ocean on Europa. The Hubble data were taken on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions. Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center


In one of the most promising places in the Solar System where life may exist, astronomers using NASA’s Hubble Space Telescope have photographed what appears to be water vapor plumes escaping Jupiter’s moon Europa.

The team from the Space Telescope Science Institute (STScI) in Baltimore saw finger-like projections when viewing Europa as it past in front of Jupiter, according to team leader William Sparks.

The discovery occurred by accident as the team’s original proposal was to observe Europa to determine if it had an atmosphere or exosphere.

An exosphere of neon was detected on Earth’s Moon on August 17, 2015 based on study the data from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft.

Read the rest of this entry »

NASA Scientists Find ‘Impossible’ Cloud on Titan — Again

Posted on Updated on

The hazy globe of Titan hangs in front of Saturn and its rings in this natural color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/Space Science Institute

 

The puzzling appearance of an ice cloud seemingly out of thin air has prompted NASA scientists to suggest that a different process than previously thought — possibly similar to one seen over Earth’s poles — could be forming clouds on Saturn’s moon Titan.

Located in Titan’s stratosphere, the cloud is made of a compound of carbon and nitrogen known as dicyanoacetylene (C4N2), an ingredient in the chemical cocktail that colors the giant moon’s hazy, brownish-orange atmosphere. 

Read the rest of this entry »

Saturn Spacecraft Samples Interstellar Dust

Posted on Updated on

Of the millions of dust grains Cassini has sampled at Saturn, a few dozen appear to have come from beyond our solar system. Scientists believe these special grains have interstellar origins because they moved much faster and in different directions compared to dusty material native to Saturn. Image credit: NASA/JPL-Caltech

 

NASA’s Cassini spacecraft has detected the faint but distinct signature of dust coming from beyond our solar system. The research, led by a team of Cassini scientists primarily from Europe, is published this week in the journal Science.

Cassini has been in orbit around Saturn since 2004, studying the giant planet, its rings and its moons. The spacecraft has also sampled millions of ice-rich dust grains with its cosmic dust analyzer instrument. The vast majority of the sampled grains originate from active jets that spray from the surface of Saturn’s geologically active moon Enceladus.

But among the myriad microscopic grains collected by Cassini, a special few — just 36 grains — stand out from the crowd. Scientists conclude these specks of material came from interstellar space — the space between the stars. 

Alien dust in the solar system is not unanticipated. In the 1990s, the ESA/NASA Ulysses mission made the first in-situ observations of this material, which were later confirmed by NASA’s Galileo spacecraft. The dust was traced back to the local interstellar cloud: a nearly empty bubble of gas and dust that our solar system is traveling through with a distinct direction and speed.

“From that discovery, we always hoped we would be able to detect these interstellar interlopers at Saturn with Cassini. We knew that if we looked in the right direction, we should find them,” said Nicolas Altobelli, Cassini project scientist at ESA (European Space Agency) and lead author of the study. “Indeed, on average, we have captured a few of these dust grains per year, travelling at high speed and on a specific path quite different from that of the usual icy grains we collect around Saturn.”

The tiny dust grains were speeding through the Saturn system at over 45,000 mph (72,000 kilometers per hour), fast enough to avoid being trapped inside the solar system by the gravity of the sun and its planets.

“We’re thrilled Cassini could make this detection, given that our instrument was designed primarily to measure dust from within the Saturn system, as well as all the other demands on the spacecraft,” said Marcia Burton, a Cassini fields and particles scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and a co-author of the paper.

Importantly, unlike Ulysses and Galileo, Cassini was able to analyze the composition of the dust for the first time, showing it to be made of a very specific mixture of minerals, not ice. The grains all had a surprisingly similar chemical make-up, containing major rock-forming elements like magnesium, silicon, iron and calcium in average cosmic proportions. Conversely, more reactive elements like sulfur and carbon were found to be less abundant compared to their average cosmic abundance. 

“Cosmic dust is produced when stars die, but with the vast range of types of stars in the universe, we naturally expected to encounter a huge range of dust types over the long period of our study,” said Frank Postberg of the University of Heidelberg, a co-author of the paper and co-investigator of Cassini’s dust analyzer.

Stardust grains are found in some types of meteorites, which have preserved them since the birth of our solar system. They are generally old, pristine and diverse in their composition. But surprisingly, the grains detected by Cassini aren’t like that. They have apparently been made rather uniform through some repetitive processing in the interstellar medium, the researchers said.

The authors speculate on how this processing of dust might take place: Dust in a star-forming region could be destroyed and recondense multiple times as shock waves from dying stars passed through, resulting in grains like the ones Cassini observed streaming into our solar system.

“The long duration of the Cassini mission has enabled us to use it like a micrometeorite observatory, providing us privileged access to the contribution of dust from outside our solar system that could not have been obtained in any other way,” said Altobelli.

The Cassini-Huygens mission is a cooperative project of NASA, ESA and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington. The Cosmic Dust Analyzer is supported by the German Aerospace Center (DLR); the instrument is managed by the University of Stuttgart, Germany.

For more information about Cassini, visit: http://www.nasa.gov/cassini or http://saturn.jpl.nasa.gov

 

Saturn’s Geyser Moon Shines in Close Flyby Views

Posted on

  

NASA’s Cassini spacecraft has begun transmitting its latest images of Saturn’s icy, geologically active moon Enceladus, acquired during the dramatic Oct. 28 flyby in which the probe passed about 30 miles (49 kilometers) above the moon’s south polar region. The spacecraft will continue transmitting its data from the encounter for the next several days.

“Cassini’s stunning images are providing us a quick look at Enceladus from this ultra-close flyby, but some of the most exciting science is yet to come,” said Linda Spilker, the mission’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Researchers will soon begin studying data from Cassini’s gas analyzer and dust detector instruments, which directly sampled the moon’s plume of gas and dust-sized icy particles during the flyby. Those analyses are likely to take several weeks, but should provide important insights about the composition of the global ocean beneath Enceladus’ surface and any hydrothermal activity occurring on the ocean floor. The potential for such activity in this small ocean world has made Enceladus a prime target for future exploration in search of habitable environments in the solar system beyond Earth.

In addition to the processed images, unprocessed, or “raw,” images appear on the Cassini mission website at: http://saturn.jpl.nasa.gov/mission/flybys/enceladus20151028

Cassini’s next and final close Enceladus flyby will take place on Dec. 19, when the spacecraft will measure the amount of heat coming from the moon’s interior. The flyby will be at an altitude of 3,106 miles (4,999 kilometers).

Additional information and multimedia products for Cassini’s final Enceladus flybys are available at: http://solarsystem.nasa.gov/finalflybys

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the mission for the agency’s Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. The Cassini imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about Cassini, visit: http://www.nasa.gov/cassini or http://saturn.jpl.nasa.gov

NASA’s Cassini spacecraft has begun transmitting its latest images of Saturn’s icy, geologically active moon Enceladus, acquired during the dramatic Oct. 28 flyby in which the probe passed about 30 miles (49 kilometers) above the moon’s south polar region. The spacecraft will continue transmitting its data from the encounter for the next several days.

“Cassini’s stunning images are providing us a quick look at Enceladus from this ultra-close flyby, but some of the most exciting science is yet to come,” said Linda Spilker, the mission’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California.
Researchers will soon begin studying data from Cassini’s gas analyzer and dust detector instruments, which directly sampled the moon’s plume of gas and dust-sized icy particles during the flyby. Those analyses are likely to take several weeks, but should provide important insights about the composition of the global ocean beneath Enceladus’ surface and any hydrothermal activity occurring on the ocean floor. The potential for such activity in this small ocean world has made Enceladus a prime target for future exploration in search of habitable environments in the solar system beyond Earth.
In addition to the processed images, unprocessed, or “raw,” images appear on the Cassini mission website at: http://saturn.jpl.nasa.gov/mission/flybys/enceladus20151028

Cassini’s next and final close Enceladus flyby will take place on Dec. 19, when the spacecraft will measure the amount of heat coming from the moon’s interior. The flyby will be at an altitude of 3,106 miles (4,999 kilometers).
Additional information and multimedia products for Cassini’s final Enceladus flybys are available at: http://solarsystem.nasa.gov/finalflybys

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the mission for the agency’s Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. The Cassini imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about Cassini, visit: http://www.nasa.gov/cassini or http://saturn.jpl.nasa.gov

Seven Key Facts About Cassini’s Oct. 28 ‘Plume Dive’

Posted on

Cassini Flyby

 

NASA’s Cassini spacecraft will sample the ocean of Saturn’s moon Enceladus on Wednesday, Oct. 28, when it flies through the moon’s plume of icy spray.

Cassini launched in 1997 and entered orbit around Saturn in 2004. Since then, it has been studying the huge planet, its rings and its magnetic field. Here are some things to know about the mission’s upcoming close flyby of Enceladus:

  • Enceladus is an icy moon of Saturn. Early in its mission, Cassini discovered Enceladus has remarkable geologic activity, including a towering plume of ice, water vapor and organic molecules spraying from its south polar region. Cassini later determined the moon has a global ocean and likely hydrothermal activity, meaning it could have the ingredients needed to support simple life.
  • The flyby will be Cassini’s deepest-ever dive through the Enceladus plume, which is thought to come from the ocean below. The spacecraft has flown closer to the surface of Enceladus before, but never this low directly through the active plume.
  • The flyby is not intended to detect life, but it will provide powerful new insights about how habitable the ocean environment is within Enceladus.
  • Cassini scientists are hopeful the flyby will provide insights about how much hydrothermal activity — that is, chemistry involving rock and hot water — is occurring within Enceladus. This activity could have important implications for the potential habitability of the ocean for simple forms of life. The critical measurement for these questions is the detection of molecular hydrogen by the spacecraft.
  • Scientists also expect to better understand the chemistry of the plume as a result of the flyby. The low altitude of the encounter is, in part, intended to afford Cassini greater sensitivity to heavier, more massive molecules, including organics, than the spacecraft has observed during previous, higher-altitude passes through the plume
  • The flyby will help solve the mystery of whether the plume is composed of column-like, individual jets, or sinuous, icy curtain eruptions — or a combination of both. The answer would make clearer how material is getting to the surface from the ocean below.
  • Researchers are not sure how much icy material the plumes are actually spraying into space. The amount of activity has major implications for how long Enceladus might have been active.

An online toolkit for all three final Enceladus flybys is available at:  http://solarsystem.nasa.gov/finalflybys

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. JPL manages the mission for NASA’s Science Mission Directorate in Washington.

For more information about Cassini, visit:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

Cassini Begins Series of Flybys with Close-up of Saturn Moon Enceladus

Posted on Updated on

jpeg
LATEST NEWS
NASA JPL latest news release
Cassini Begins Series of Flybys with Close-up of Saturn Moon Enceladus

NASA’s Cassini spacecraft will wrap up its time in the region of Saturn’s large, icy moons with a series of three close encounters with Enceladus starting Wednesday, Oct. 14. Images are expected to begin arriving one to two days after the flyby, which will provide the first opportunity for a close-up look at the north polar region of Enceladus.

Wednesday’s flyby is considered a moderately close approach for Cassini, which will pass at an altitude of 1,142 miles (1,839 kilometers) above the moon’s surface. Closest approach to Enceladus will occur at 3:41 a.m. PDT (6:41 a.m. EDT). The spacecraft’s final two approaches will take place in late October and mid-December.

During Cassini’s early-mission encounters with the moon, the northern terrain of Enceladus was masked by wintry darkness. Now that the summer sun is shining on the high northern latitudes, scientists will be looking for signs of ancient geological activity similar to the geyser-spouting, tiger-stripe fractures in the moon’s south polar region. Features observed during the flyby could help them understand whether the north also was geologically active at some time in the past.

“We’ve been following a trail of clues on Enceladus for 10 years now,” said Bonnie Buratti, a Cassini science team member and icy moons expert at NASA’s Jet Propulsion Laboratory in Pasadena, California. “The amount of activity on and beneath this moon’s surface has been a huge surprise to us. We’re still trying to figure out what its history has been, and how it came to be this way.”

Since Cassini’s 2005 discovery of continually-erupting fountains of icy material on Enceladus, the Saturn moon has become one of the most promising places in the solar system to search for present-day habitable environments. Mission scientists announced evidence in March that hydrothermal activity may be occurring on the seafloor of the moon’s underground ocean. In September they broke news that its ocean — previously thought to be only a regional sea — was, in fact, global.

“The global nature of Enceladus’ ocean and the inference that hydrothermal systems might exist at the ocean’s base strengthen the case that this small moon of Saturn may have environments similar to those at the bottom of our own ocean,” said Jonathan Lunine, an interdisciplinary scientist on the Cassini mission at Cornell University in Ithaca, New York. “It is therefore very tempting to imagine that life could exist in such a habitable realm, a billion miles from our home.”

The Oct. 14 encounter will serve as a prelude to the main event, a flyby of Enceladus on Wednesday, Oct. 28, during which Cassini will come dizzyingly close to the icy moon, passing a mere 30 miles (49 kilometers) above the moon’s south polar region. During this encounter, Cassini will make its deepest-ever dive through the moon’s plume of icy spray, collecting images and valuable data about what’s going on beneath the frozen surface. Cassini scientists are hopeful data from that flyby will provide evidence of how much hydrothermal activity is occurring in the moon’s ocean, and how the amount of activity impacts the habitability of Enceladus’ ocean.

Cassini’s final close flyby on Dec. 19 will examine how much heat is coming from the moon’s interior from an altitude of 3,106 miles (4,999 kilometers).

An online toolkit for all three final Enceladus flybys is available at:

http://solarsystem.nasa.gov/finalflybys

Cassini arrived at Saturn in 2004 and still has about two years left on its mission. Beginning in November, mission controllers will begin to slowly raise Cassini’s orbit out of the space around the Saturn’s equator, where flybys of the large moons are more common. Coming up are a number of closest-ever brushes with the small moons that huddle near the planet’s rings.

“We’ll continue observing Enceladus and its remarkable activity for the remainder of our precious time at Saturn,” said Linda Spilker, Cassini project scientist at JPL. “But these three encounters will be our last chance to see this fascinating world up close for many years to come.”

The Cassini-Huygens mission is a cooperative project of NASA, ESA and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington.

For more information about Cassini, visit:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

NASA Jet Propulsion Laboratory | jplnewsroom | NASA’s Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

track.php?msgid=182788&act=2FIS&r=17340975&c=1389932