Ancient Look At Universe

New Clues About How Ancient Galaxies Lit up the Universe

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
calla.e.cofield@jpl.nasa.gov 

 

This deep-field view of the sky (center) taken by NASA’s Hubble and Spitzer space telescopes is dominated by galaxies – including some very faint, very distant ones – circled in red. The bottom right inset shows the light collected from one of those galaxies during a long-duration observation.Credit: NASA/JPL-Caltech/ESA/Spitzer/P. Oesch/S. De Barros/I.Labbe

 

NASA’s Spitzer Space Telescope has revealed that some of the universe’s earliest galaxies were brighter than expected. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation. The finding offers clues to the cause of the Epoch of Reionization, a major cosmic event that transformed the universe from being mostly opaque to the brilliant starscape seen today. 

In a new study (Royal Astronomical Society), researchers report on observations of some of the first galaxies to form in the universe, less than 1 billion years after the big bang (or a little more than 13 billion years ago). The data show that in a few specific wavelengths of infrared light, the galaxies are considerably brighter than scientists anticipated. The study is the first to confirm this phenomenon for a large sampling of galaxies from this period, showing that these were not special cases of excessive brightness, but that even average galaxies present at that time were much brighter in these wavelengths than galaxies we see today. 

Read the rest of this entry »

SPACE-TIME: The Missing Mass Mystery

Posted on Updated on

By George McGinn
Cosmology and Space Research Institute

 
This illustration shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent. Credits: NASA, ESA, A. Field (STScI), and A. Riess (STScI/JHU)

 

I don’t believe in Dark Matter or Dark Energy. Even the new Dark Flow.

While I would like to think that our cosmologists and physicists got lazy, what I really believe is they just created placeholders, misleading ones at that, but I wholeheartedly agree that we have no idea what they are, do, or if they are even real.
 
I like to watch PBS Space-Time on YouTube, as Host and Physicist Matt O’Dowd* would discuss topics that are relevant today in our field, and there is something for everyone, from the novice to the professionals. And while he sometimes will do numerous episodes, like on Dark Matter and Dark Energy, I don’t always agree with what he’s talking about.
 
But after watching the episode below (it is an older one, but the information is as relevant today as it was when it was reported on), I had to post a reply (which is below) and a short explanation, as I am working on a research paper on Dark Matter, Dark Energy, and the new voodoo science of “Dark Flow,” which I will address in another post here.
 
 

Read the rest of this entry »

Dark Matter Less Influential in Galaxies in Early Universe

Posted on Updated on

Reinhard Genzel
Director, Max-Planck-Institut für extraterrestrische Physik
Garching bei München, Germany
March 15, 2017 

 

New observations indicate that massive, star-forming galaxies during the peak epoch of galaxy formation, 10 billion years ago, were dominated by baryonic or “normal” matter. This is in stark contrast to present-day galaxies, where the effects of mysterious dark matter seem to be much greater. This surprising result was obtained using ESO’s Very Large Telescope and suggests that dark matter was less influential in the early Universe than it is today. The research is presented in four papers, one of which will be published in the journal Nature this week.

 

VLT observations of distant galaxies suggest they were dominated by normal matter


We see normal matter as brightly shining stars, glowing gas and clouds of dust. But the more elusive dark matter does not emit, absorb or reflect light and can only be observed via its gravitational effects. The presence of dark matter can explain why the outer parts of nearby spiral galaxies rotate more quickly than would be expected if only the normal matter that we can see directly were present [1].

Now, an international team of astronomers led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany have used the KMOS and SINFONI instruments at ESO’s Very Large Telescope in Chile [2] to measure the rotation of six massive, star-forming galaxies in the distant Universe, at the peak of galaxy formation 10 billion years ago.

What they found was intriguing: unlike spiral galaxies in the modern Universe, the outer regions of these distant galaxies seem to be rotating more slowly than regions closer to the core — suggesting there is less dark matter present than expected [3].

 

Read the rest of this entry »

Ancient Stardust Sheds Light on the First Stars

Posted on Updated on

This research was presented in a paper entitled “Dust in the Reionization Era: ALMA Observations of a z =8.38 Gravitationally-Lensed Galaxy”
by Laporte et al., to appear in 
The Astrophysical Journal Letters.

 
This artist’s impression shows what the very distant young galaxy A2744_YD4 might look like. Observations using ALMA have shown that this galaxy, seen when the Universe was just 4% of its current age, is rich in dust. Such dust was produced by an earlier generation of stars and these observations provide insights into the birth and explosive deaths of the very first stars in the Universe. Credit: ESO/M. Kornmesser
 
Astronomers have used ALMA to detect a huge mass of glowing stardust in a galaxy seen when the Universe was only four percent of its present age. This galaxy was observed shortly after its formation and is the most distant galaxy in which dust has been detected. This observation is also the most distant detection of oxygen in the Universe. These new results provide brand-new insights into the birth and explosive deaths of the very first stars.

An international team of astronomers, led by Nicolas Laporte of University College London, have used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe A2744_YD4, the youngest and most remote galaxy ever seen by ALMA. They were surprised to find that this youthful galaxy contained an abundance of interstellar dust — dust formed by the deaths of an earlier generation of stars.

Follow-up observations using the X-shooter instrument on ESO’s Very Large Telescope confirmed the enormous distance to A2744_YD4. The galaxy appears to us as it was when the Universe was only 600 million years old, during the period when the first stars and galaxies were forming [1].

 

Read the rest of this entry »