Astronomy
What’s Up – October 2019
Published by NASA

Link to article with video: https://www.jpl.nasa.gov/video/details.php?id=1588
Link to page: International Observe the Moon Night, Oct 5, 2019
What can you see in the October sky? Join the global celebration of International Observe the Moon Night on Oct. 5th, then try to catch the ice giant planets Uranus and Neptune, which are well placed for viewing in the late night sky.
Transcript:
What’s Up for October? A night for the whole world to observe the Moon and hunting for ice giants!
International Observe the Moon Night is Oct. 5th. It’s an annual celebration of lunar observation and exploration. Events are scheduled in lots of places around the world, so there may be one near you. But all you really need to participate is to go out and look up.
The event is timed to coincide with the first quarter moon. This allows for some great observing along the lunar terminator – the line that divides the dayside from the nightside. With even a small pair of binoculars, you can see some great details as features like mountains and craters pop up into the light. Learn more and look for events in your area at moon.nasa.gov/observe.
October is a great time to try and capture an ICE GIANT. Now, these aren’t mythical creatures. They’re planets – the most distant of the major planets of our solar system, Uranus and Neptune.
The four giant planets of our solar system are not created equal. The gas giants, Jupiter and Saturn, are much bigger and way more massive, while the ice giants are so named because they contain a much higher amount of materials that typically form ices in the frigid depths of the outer solar system.
In October, both Uranus and Neptune are well placed in the late night sky. In fact, you can see all four giant planets in the same evening if you look for Jupiter and Saturn in the west after sunset, and then come back a couple of hours later to spot Uranus and Neptune. (Think of it as your own personal “Voyager mission.” NASA’s Voyager 2 is the only spacecraft to have visited the ice giants so far, although scientists are eager to go back for a more detailed study.)
Unlike Jupiter and Saturn, the ice giants are quite faint, so the best way to observe them is with a telescope, and from personal experience, it’s much easier to find them if you have a computer-controlled mount that can automatically point the telescope for you. If you don’t have access to one, find a local event with the Night Sky Network at nightsky.jpl.nasa.gov. Otherwise, sky watching apps can help you star-hop your way to these two incredibly distant planets.
Now be advised, because they’re so far away, each planet appears as just a point of light. But with a modest telescope, you’ll see Uranus as a tiny disk. You’d be forgiven for mistaking Neptune as a star – it’s the same size as Uranus, but much farther away, so it’s fainter.
The ice giants are elusive, but well worth the effort to say you’ve seen them with your own eyes.
Here are the phases of the Moon for October. You can catch up on all of NASA’s current and future missions at nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
Black Hole Image Makes History
Elizabeth Landau
NASA Headquarters, Washington

A black hole and its shadow have been captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.
A black hole is an extremely dense object from which no light can escape. Anything that comes within a black hole’s “event horizon,” its point of no return, will be consumed, never to re-emerge, because of the black hole’s unimaginably strong gravity. By its very nature, a black hole cannot be seen, but the hot disk of material that encircles it shines bright. Against a bright backdrop, such as this disk, a black hole appears to cast a shadow.
NASA Selects New Mission to Explore Origins of Universe
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
Steve Cole
NASA Headquarters, Washington

NASA has selected a new space mission that will help astronomers understand both how our universe evolved and how common are the ingredients for life in our galaxy’s planetary systems.
The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission is a planned two-year mission funded at $242 million (not including launch costs) and targeted to launch in 2023.
What Uranus Cloud Tops Have in Common With Rotten Eggs

Even after decades of observations and a visit by NASA’s Voyager 2 spacecraft, Uranus held on to one critical secret — the composition of its clouds. Now, one of the key components of the planet’s clouds has finally been verified.
A global research team that includes Glenn Orton of NASA’s Jet Propulsion Laboratory in Pasadena, California, has spectroscopically dissected the infrared light from Uranus captured by the 26.25-foot (8-meter) Gemini North telescope on Hawaii’s Mauna Kea. They found hydrogen sulfide, the odiferous gas that most people avoid, in Uranus’ cloud tops. The long-sought evidence was published in the April 23rd issue of the journal Nature Astronomy.
The detection of hydrogen sulfide high in Uranus’ cloud deck (and presumably Neptune’s) is a striking difference from the gas giant planets located closer to the Sun — Jupiter and Saturn — where ammonia is observed above the clouds, but no hydrogen sulfide. These differences in atmospheric composition shed light on questions about the planets’ formation and history.
Stars Born in Winds from Supermassive Black Holes
ESO’s VLT spots brand-new type of star formation

Observations using ESO’s Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. The results are published in the journal Nature.
A UK-led group of European astronomers used the MUSE and X-shooter instruments on the Very Large Telescope(VLT) at ESO’s Paranal Observatory in Chile to study an ongoing collision between two galaxies, known collectively as IRAS F23128-5919, that lie around 600 million light-years from Earth. The group observed the colossal winds of material — or outflows — that originate near the supermassive black hole at the heart of the pair’s southern galaxy, and have found the first clear evidence that stars are being born within them [1].
Such galactic outflows are driven by the huge energy output from the active and turbulent centres of galaxies. Supermassive black holes lurk in the cores of most galaxies, and when they gobble up matter they also heat the surrounding gas and expel it from the host galaxy in powerful, dense winds [2].
NASA’s Juno Spacecraft Set for Fifth Jupiter Flyby
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington

NASA’s Juno spacecraft will make its fifth flyby over Jupiter’s mysterious cloud tops on Monday, March 27, at 1:52 a.m. PDT (4:52 a.m. EDT, 8:52 UTC).
At the time of closest approach (called perijove), Juno will be about 2,700 miles (4,400 kilometers) above the planet’s cloud tops, traveling at a speed of about 129,000 miles per hour (57.8 kilometers per second) relative to the gas-giant planet. All of Juno’s eight science instruments will be on and collecting data during the flyby.
The Many Faces of Rosetta’s Comet 67P
Markus Bauer
European Space Agency, Noordwijk, Netherlands
M. Ramy El-Maarry
University of Colorado
Matt Taylor
ESA Rosetta project scientist

NOTE: Make sure you check 0ut the accompanying Space Photo Exploration page for Comet 67P/Churyumov-Gerasimenko
Images returned from the European Space Agency’s Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place – full of growing fractures, collapsing cliffs and massive rolling boulders. Moving material buried some features on the comet’s surface while exhuming others. A study on 67P’s changing surface was released Tuesday, March 21, in the journal Science.
“As comets approach the sun, they go into overdrive and exhibit spectacular changes on their surface,” said Ramy El-Maarry, study leader and a member of the U.S. Rosetta science team from the University of Colorado, Boulder. “This is something we were not able to really appreciate before the Rosetta mission, which gave us the chance to look at a comet in ultra-high resolution for more than two years.”
Celestial Cat Meets Cosmic Lobster
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Astronomers have for a long time studied the glowing, cosmic clouds of gas and dust catalogued as NGC 6334 and NGC 6357, this gigantic new image from ESO’s Very Large Telescope Survey Telescope being only the most recent one. With around two billion pixels this is one of the largest images ever released by ESO. The evocative shapes of the clouds have led to their memorable names: the Cat’s Paw Nebula and the Lobster Nebula, respectively. Credit: ES
NGC 6334 is located about 5500 light-years away from Earth, while NGC 6357 is more remote, at a distance of 8000 light-years. Both are in the constellation of Scorpius (The Scorpion), near the tip of its stinging tail.
The British scientist John Herschel first saw traces of the two objects, on consecutive nights in June 1837, during his three-year expedition to the Cape of Good Hope in South Africa. At the time, the limited telescopic power available to Herschel, who was observing visually, only allowed him to document the brightest “toepad” of the Cat’s Paw Nebula. It was to be many decades before the true shapes of the nebulae became apparent in photographs — and their popular names coined.
The three toepads visible to modern telescopes, as well as the claw-like regions in the nearby Lobster Nebula, are actually regions of gas — predominantly hydrogen — energised by the light of brilliant newborn stars. With masses around 10 times that of the Sun, these hot stars radiate intense ultraviolet light. When this light encounters hydrogen atoms still lingering in the stellar nursery that produced the stars, the atoms become ionised. Accordingly, the vast, cloud-like objects that glow with this light from hydrogen (and other) atoms are known as emission nebulae.
Water Vapor Plumes Discovered on Jupiter’s Moon Europa
Written by George McGinn
Cosmology and Space Research
September 27, 2016 at 4:32pm EST

In one of the most promising places in the Solar System where life may exist, astronomers using NASA’s Hubble Space Telescope have photographed what appears to be water vapor plumes escaping Jupiter’s moon Europa.
The team from the Space Telescope Science Institute (STScI) in Baltimore saw finger-like projections when viewing Europa as it past in front of Jupiter, according to team leader William Sparks.
The discovery occurred by accident as the team’s original proposal was to observe Europa to determine if it had an atmosphere or exosphere.
An exosphere of neon was detected on Earth’s Moon on August 17, 2015 based on study the data from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft.
NASA’s Juno to Soar Closest to Jupiter This Saturday

This Saturday at 5:51 a.m. PDT, (8:51 a.m. EDT, 12:51 UTC) NASA’s Juno spacecraft will get closer to the cloud tops of Jupiter than at any other time during its prime mission. At the moment of closest approach, Juno will be about 2,600 miles (4,200 kilometers) above Jupiter’s swirling clouds and traveling at 130,000 mph (208,000 kilometers per hour) with respect to the planet. There are 35 more close flybys of Jupiter scheduled during its prime mission (scheduled to end in February of 2018). The Aug. 27 flyby will be the first time Juno will have its entire suite of science instruments activated and looking at the giant planet as the spacecraft zooms past.
“This is the first time we will be close to Jupiter since we entered orbit on July 4,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute in San Antonio. “Back then we turned all our instruments off to focus on the rocket burn to get Juno into orbit around Jupiter. Since then, we have checked Juno from stem to stern and back again. We still have more testing to do, but we are confident that everything is working great, so for this upcoming flyby Juno’s eyes and ears, our science instruments, will all be open.”
“This is our first opportunity to really take a close-up look at the king of our solar system and begin to figure out how he works,” Bolton said.
While the science data from the pass should be downlinked to Earth within days, interpretation and first results are not expected for some time.
“No other spacecraft has ever orbited Jupiter this closely, or over the poles in this fashion,” said Steve Levin, Juno project scientist from NASA’s Jet Propulsion Laboratory in Pasadena, California. “This is our first opportunity and there are bound to be surprises. We need to take our time to make sure our conclusions are correct.”
Not only will Juno’s suite of eight science instruments be on, the spacecraft’s visible light imager — JunoCam will also be snapping some closeups. A handful of JunoCam images, including the highest resolution imagery of the Jovian atmosphere and the first glimpse of Jupiter’s north and south poles, are expected to be released during the later part of next week.
The Juno spacecraft launched on Aug. 5, 2011, from Cape Canaveral, Florida. JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. Caltech, in Pasadena, California, manages JPL for NASA.
More information on the Juno mission is available at: http://www.nasa.gov/juno
Follow the mission on Facebook and Twitter at: http://www.facebook.com/NASAJuno or http://www.twitter.com/NASAJuno