Dark Energy

SPACE-TIME: The Missing Mass Mystery

Posted on Updated on

By George McGinn
Cosmology and Space Research Institute

 
This illustration shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent. Credits: NASA, ESA, A. Field (STScI), and A. Riess (STScI/JHU)

 

I don’t believe in Dark Matter or Dark Energy. Even the new Dark Flow.

While I would like to think that our cosmologists and physicists got lazy, what I really believe is they just created placeholders, misleading ones at that, but I wholeheartedly agree that we have no idea what they are, do, or if they are even real.
 
I like to watch PBS Space-Time on YouTube, as Host and Physicist Matt O’Dowd* would discuss topics that are relevant today in our field, and there is something for everyone, from the novice to the professionals. And while he sometimes will do numerous episodes, like on Dark Matter and Dark Energy, I don’t always agree with what he’s talking about.
 
But after watching the episode below (it is an older one, but the information is as relevant today as it was when it was reported on), I had to post a reply (which is below) and a short explanation, as I am working on a research paper on Dark Matter, Dark Energy, and the new voodoo science of “Dark Flow,” which I will address in another post here.
 
 

Read the rest of this entry »

Galaxy Clusters Reveal New Dark Matter Insights

Posted on Updated on

This comparison of galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog shows a spread-out cluster (left) and a more densely-packed cluster (right). A new study shows that these differences are related to the surrounding dark-matter environment. Credit: Sloan Digital Sky Survey


Editor’s Note: This story would have been up at 3:30pm on Monday, however, my tablet kept rebooting itself after an iOS update. Here it is, and it very interesting.


Dark matter is a mysterious cosmic phenomenon that accounts for 27 percent of all matter and energy. Though dark matter is all around us, we cannot see it or feel it. But scientists can infer the presence of dark matter by looking at how normal matter behaves around it.

Galaxy clusters, which consist of thousands of galaxies, are important for exploring dark matter because they reside in a region where such matter is much denser than average. Scientists believe that the heavier a cluster is, the more dark matter it has in its environment. But new research suggests the connection is more complicated than that. 

“Galaxy clusters are like the large cities of our universe. In the same way that you can look at the lights of a city at night from a plane and infer its size, these clusters give us a sense of the distribution of the dark matter that we can’t see,” said Hironao Miyatake at NASA’s Jet Propulsion Laboratory, Pasadena, California.

A new study in Physical Review Letters, led by Miyatake, suggests that the internal structure of a galaxy cluster is linked to the dark matter environment surrounding it. This is the first time that a property besides the mass of a cluster has been shown to be associated with surrounding dark matter.

Warping Galaxies
This image from NASA’s Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe. Credit: NASA/ESA/JPL-Caltech/Yale/CNRS

Researchers studied approximately 9,000 galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog, and divided them into two groups by their internal structures: one in which the individual galaxies within clusters were more spread out, and one in which they were closely packed together. The scientists used a technique called gravitational lensing — looking at how the gravity of clusters bends light from other objects — to confirm that both groups had similar masses.

But when the researchers compared the two groups, they found an important difference in the distribution of galaxy clusters. Normally, galaxy clusters are separated from other clusters by 100 million light-years on average. But for the group of clusters with closely packed galaxies, there were fewer neighboring clusters at this distance than for the sparser clusters. In other words, the surrounding dark-matter environment determines how packed a cluster is with galaxies.

“This difference is a result of the different dark-matter environments in which the groups of clusters formed. Our results indicate that the connection between a galaxy cluster and surrounding dark matter is not characterized solely by cluster mass, but also its formation history,” Miyatake said.

Study co-author David Spergel, professor of astronomy at Princeton University in New Jersey, added, “Previous observational studies had shown that the cluster’s mass is the most important factor in determining its global properties. Our work has shown that ‘age matters’: Younger clusters live in different large-scale dark-matter environments than older clusters.”

The results are in line with predictions from the leading theory about the origins of our universe. After an event called cosmic inflation, a period of less than a trillionth of a second after the big bang, there were small changes in the energy of space called quantum fluctuations. These changes then triggered a non-uniform distribution of matter. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe.

“The connection between the internal structure of galaxy clusters and the distribution of surrounding dark matter is a consequence of the nature of the initial density fluctuations established before the universe was even one second old,” Miyatake said. 

Researchers will continue to explore these connections.

“Galaxy clusters are remarkable windows into the mysteries of the universe. By studying them, we can learn more about the evolution of large-scale structure of the universe, and its early history, as well as dark matter and dark energy,” Miyatake said.

 

 

 

 

On the Bias of the Distance-Redshift Relation from Gravitational Lensing [CEA]

Posted on Updated on

image

arXiver

http://arxiv.org/abs/1503.08506

A long standing question in cosmology is whether gravitational lensing changes the distance-redshift relation $D(z)$ or the mean flux density of sources. Interest in this has been rekindled by recent studies in non-linear relativistic perturbation theory that find biases in both the area of a surface of constant redshift and in the mean distance to this surface, with a fractional bias in both cases on the order of the mean squared convergence $langle kappa^2 rangle$. Any such area bias could alter CMB cosmology, and the corresponding bias in mean flux density could affect supernova cosmology. Here we show that, in an ensemble averaged sense, the perturbation to the area of a surface of constant redshift is in reality much smaller, being on the order of the cumulative bending angle squared, or roughly a part-in-a-million effect. This validates the arguments of Weinberg (1976) that the mean magnification $mu$ of sources…

View original post 151 more words

Journal Review: The Dark Side of Cosmology: Dark Matter and Dark Energy 

Posted on Updated on

A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of “dark matter,” a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of “dark energy,” energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. (Author: David N. Spergel)

Read the Full Journal Article written by David N. Spergel at Science Magainze’s website.



Dark energy comprises 69% of the mass energy density of the universe, dark matter comprises 25%, and “ordinary” atomic matter makes up 5%. There are other observable subdominant components: Three different types of neutrinos comprise at least 0.1%, the cosmic background radiation makes up 0.01%, and black holes comprise at least 0.005%.