Deep Space

How NASA’s Spitzer Has Stayed Alive for So Long

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
calla.e.cofield@jpl.nasa.gov 

 

Members of the Spitzer engineering team pose in the mission support area. Front row (left to right): Natalie Martinez-Vlashoff, Jose Macias, Lisa Storrie-Lombardi, Amanda Kniepkamp, Bolinda Kahr, Mariah Woody, Socorro Rangel, May Tran. Middle: Pedro Diaz-Rubin, Joseph Hunt, John Ibanez, Laura Su, Nari Hwangpo. Back row: Michael Diaz, Adam Harbison, Richard Springer, Joe Stuesser, Ken Stowers, Dave Bliss. Not pictured: Bob Lineaweaver, Jason Hitz and Walt Hoffman.

 

After nearly 16 years of exploring the cosmos in infrared light, NASA’s Spitzer Space Telescope will be switched off permanently on Jan. 30, 2020. By then, the spacecraft will have operated for more than 11 years beyond its prime mission, thanks to the Spitzer engineering team’s ability to address unique challenges as the telescope slips farther and farther from Earth. 

Managed and operated by NASA’s Jet Propulsion Laboratory in Pasadena, California, Spitzer is a small but transformational observatory. It captures infrared light, which is often emitted by “warm” objects that aren’t quite hot enough to radiate visible light. Spitzer has lifted the veil on hidden objects in nearly every corner of the universe, from a new ring around Saturn to observations of some of the most distant galaxies known. It has spied stars in every stage of lifemapped our home galaxy, captured gorgeous images of nebulas and probed newly discovered planets orbiting distant stars. 

 

Read the rest of this entry »

The Coolest Experiment in the Universe

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.

 

Cold Atom Laboratory (CAL) physicist David Aveline works in the CAL test bed Shown here is theInternational Space Station Cold Atom Laboratory (CAL) Cold Atom Laboratory Astronaut Ricky Arnold assists with the installation of NASA’s Cold Atom Laboratory The International Space Station, shown here in 2018, is home to many scientific experiments, including NASA’s Cold Atom Laboratory. Credit: NASA

 

The Cold Atom Laboratory (CAL) consists of two standardized containers that will be installed on the International Space Station. The larger container holds CAL’s physics package, or the compartment where CAL will produce clouds of ultracold atoms. Credit: NASA/JPL-Caltech

What’s the coldest place you can think of? Temperatures on a winter day in Antarctica dip as low as -120ºF (-85ºC). On the dark side of the Moon, they hit -280ºF (-173ºC). But inside NASA’s Cold Atom Laboratory on the International Space Station, scientists are creating something even colder.

The Cold Atom Lab (CAL) is the first facility in orbit to produce clouds of “ultracold” atoms, which can reach a fraction of a degree above absolute zero: -459ºF (-273ºC), the absolute coldest temperature that matter can reach. Nothing in nature is known to hit the temperatures achieved in laboratories like CAL, which means the orbiting facility is regularly the coldest known spot in the universe.

 NASA’s Cold Atom Laboratory on the International Space Station is regularly the coldest known spot in the universe. But why are scientists producing clouds of atoms a fraction of a degree above absolute zero? And why do they need to do it in space? Quantum physics, of course.

USeven months after its May 21, 2018, launch to the space station from NASA’s Wallops Flight Facility in Virginia, CAL is producing ultracold atoms daily. Five teams of scientists will carry out experiments on CAL during its first year, and three experiments are already underway. 

 

Read the rest of this entry »

Light Echoes Gives Clues To Protoplanetary Disk

Posted on Updated on

This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star’s magnetic field lines and is deposited onto the star’s surface. When material hits the star, it lights up brightly. Credits: NASA/JPL-Caltech

 

Imagine you want to measure the size of a room, but it’s completely dark. If you shout, you can tell if the space you’re in is relatively big or small, depending on how long it takes to hear the echo after it bounces off the wall. 

Astronomers use this principle to study objects so distant they can’t be seen as more than points. In particular, researchers are interested in calculating how far young stars are from the inner edge of their surrounding protoplanetary disks. These disks of gas and dust are sites where planets form over the course of millions of years.

  Read the rest of this entry »

Galaxy Clusters Reveal New Dark Matter Insights

Posted on Updated on

This comparison of galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog shows a spread-out cluster (left) and a more densely-packed cluster (right). A new study shows that these differences are related to the surrounding dark-matter environment. Credit: Sloan Digital Sky Survey


Editor’s Note: This story would have been up at 3:30pm on Monday, however, my tablet kept rebooting itself after an iOS update. Here it is, and it very interesting.


Dark matter is a mysterious cosmic phenomenon that accounts for 27 percent of all matter and energy. Though dark matter is all around us, we cannot see it or feel it. But scientists can infer the presence of dark matter by looking at how normal matter behaves around it.

Galaxy clusters, which consist of thousands of galaxies, are important for exploring dark matter because they reside in a region where such matter is much denser than average. Scientists believe that the heavier a cluster is, the more dark matter it has in its environment. But new research suggests the connection is more complicated than that. 

“Galaxy clusters are like the large cities of our universe. In the same way that you can look at the lights of a city at night from a plane and infer its size, these clusters give us a sense of the distribution of the dark matter that we can’t see,” said Hironao Miyatake at NASA’s Jet Propulsion Laboratory, Pasadena, California.

A new study in Physical Review Letters, led by Miyatake, suggests that the internal structure of a galaxy cluster is linked to the dark matter environment surrounding it. This is the first time that a property besides the mass of a cluster has been shown to be associated with surrounding dark matter.

Warping Galaxies
This image from NASA’s Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe. Credit: NASA/ESA/JPL-Caltech/Yale/CNRS

Researchers studied approximately 9,000 galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog, and divided them into two groups by their internal structures: one in which the individual galaxies within clusters were more spread out, and one in which they were closely packed together. The scientists used a technique called gravitational lensing — looking at how the gravity of clusters bends light from other objects — to confirm that both groups had similar masses.

But when the researchers compared the two groups, they found an important difference in the distribution of galaxy clusters. Normally, galaxy clusters are separated from other clusters by 100 million light-years on average. But for the group of clusters with closely packed galaxies, there were fewer neighboring clusters at this distance than for the sparser clusters. In other words, the surrounding dark-matter environment determines how packed a cluster is with galaxies.

“This difference is a result of the different dark-matter environments in which the groups of clusters formed. Our results indicate that the connection between a galaxy cluster and surrounding dark matter is not characterized solely by cluster mass, but also its formation history,” Miyatake said.

Study co-author David Spergel, professor of astronomy at Princeton University in New Jersey, added, “Previous observational studies had shown that the cluster’s mass is the most important factor in determining its global properties. Our work has shown that ‘age matters’: Younger clusters live in different large-scale dark-matter environments than older clusters.”

The results are in line with predictions from the leading theory about the origins of our universe. After an event called cosmic inflation, a period of less than a trillionth of a second after the big bang, there were small changes in the energy of space called quantum fluctuations. These changes then triggered a non-uniform distribution of matter. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe.

“The connection between the internal structure of galaxy clusters and the distribution of surrounding dark matter is a consequence of the nature of the initial density fluctuations established before the universe was even one second old,” Miyatake said. 

Researchers will continue to explore these connections.

“Galaxy clusters are remarkable windows into the mysteries of the universe. By studying them, we can learn more about the evolution of large-scale structure of the universe, and its early history, as well as dark matter and dark energy,” Miyatake said.

 

 

 

 

Media Invited to See NASA’s Orion Crew Module for its Journey to Mars

Posted on Updated on

January 20, 2016
MEDIA ADVISORY M16-005

*** NOTE: Press release are usually published under that page “Media Releases (Information for Journalist).” These press releases are usually meetings or presentation of studies. The public will most of the time have access to view or listen to most of these, but only credentialed media can ask question.

Also, before the meeting documentation may be made available, sometimes weeks before the meeting. If the documents are embargoed, we in the press know that means the information cannot be published before the embargo date and time. We use the time to pre-write our stories and prepare questions, but the embargo must be honored by all.

–  George McGinn, Examining Life (And Things of Interest), Daily Defense News and Cosmology and Space Exploration news websites.


Orion’s pressure vessel was completed Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the spacecraft’s underlying structure on which all of the spacecraft’s systems and subsystems are built and integrated. (Credit: NASA)

 

NASA’s Orion crew module will be available to media at two NASA locations Jan. 26th and in early February, as engineers continue to prepare the spacecraft to send astronauts deeper into space than ever before, including to an asteroid placed in lunar orbit and on the journey to Mars.

At 10:30 a.m. EST on Tuesday, Jan. 26, the agency’s Michoud Assembly Facility in New Orleans will host a media viewing and facility tour of the spacecraft’s recently completed pressure vessel, the underlying structure of the crew module, before it ships to NASA’s Kennedy Space Center in Florida.

To attend the event at Michoud, reporters must contact Chip Howat at 504-257-0478 or carl.j.howat@nasa.gov by 3 p.m. Monday, Jan. 25. International media accreditation for this event is closed.

The Orion pressure vessel provides a sealed environment for astronaut life support in future human-rated crew modules. Technicians at Michoud began welding together the seven large aluminum pieces of Orion’s primary structure in precise detail last September. At Kennedy, Orion will be outfitted with the spacecraft’s systems and subsystems, processed and integrated with NASA’s Space Launch System (SLS) ahead of their first joint exploration mission, or EM-1.

Michoud also is where the massive core stage of SLS is being manufactured. Reporters will be able to view tooling and newly manufactured hardware for SLS, and hear about mission progress from personnel across NASA.

Individuals available for interviews during the tour include:

  • Bill Hill, deputy associate administrator for Exploration Systems Development at NASA Headquarters in Washington
  • Mike Sarafin, EM-1 mission manager at NASA Headquarters
  • Mark Kirasich, Orion program manager at NASA’s Johnson Space Center in Houston
  • Scott Wilson, Orion production manager at Kennedy
  • John Honeycutt, SLS program manager at the agency’s Marshall Space Flight Center in Huntsville, Alabama
  • Steve Doering, SLS core stage manager at Marshall
  • Mike Bolger, Ground Systems Development and Operations program manager at Kennedy
  • NASA astronaut Rick Mastracchio
  • Mike Hawes, Orion program manager for Lockheed Martin
  • Jim Bray, crew module director for Lockheed Martin 

Orion will depart Michoud on or about Feb. 1 and travel to Kennedy aboard NASA’s Super Guppy airplane. Additional details for Orion’s arrival at Kennedy, including media accreditation, are forthcoming.

For more information about Orion, visit: http://www.nasa.gov/orion

-end- 

 

NASA Announces New Partnerships with U.S. Industry for Key Deep-Space Capabilities

Posted on Updated on

 

 Building on the success of NASA’s partnerships with commercial industry to date, NASA has selected 12 Next Space Technologies for Exploration Partnerships (NextSTEP) to advance concept studies and technology development projects in the areas of advanced propulsion, habitation and small satellites.

Through these public-private partnerships, selected companies will partner with NASA to develop the exploration capabilities necessary to enable commercial endeavors in space and human exploration to deep-space destinations such as the proving ground of space around the moon, known as cis-lunar space, and Mars.

“Commercial partners were selected for their technical ability to mature key technologies and their commitment to the potential applications both for government and private sector uses,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters. “This work ultimately will inform the strategy to move human presence further into the solar system.”

Results from these studies and hardware developments also will help determine the role for international partner involvement, by fully exploring domestic capabilities, and for Orion and Space Launch Systems missions in cis-lunar space. This work also will advance system understanding and define a need for further testing of habitation systems and components on the International Space Station.

Selected advanced electric propulsion projects will develop propulsion technology systems in the 50- to 300-kilowatt range to meet the needs of a variety of deep space mission concepts. State-of-the-art electric propulsion technology currently employed by NASA generates less than five kilowatts, and systems being developed for the Asteroid Redirect Mission (ARM) Broad Area Announcement (BAA) are in the 40-kilowatt range.

The three NextSTEP advanced propulsion projects, $400,000 to $3.5 million per year per award, will have no more than a three-year performance period focused on ground testing efforts. The selected companies are:

  • Ad Astra Rocket Company of Webster, Texas
  • Aeroject Rocketdyne Inc. of Redmond, Washington
  • MSNW LLC of Redmond, Washington

Habitation systems selections will help define the architecture and subsystems of a modular habitation capability to enable extended missions in deep space. Orion is the first component of human exploration beyond low-Earth orbit and will be capable of sustaining a crew of four for 21 days in deep space and returning them safely to Earth.

These selections are intended to augment the Orion capsule with the development of capabilities to initially sustain a crew of four for up to 60 days in cis-lunar space with the ability to scale up to transit habitation capabilities for future Mars missions. The selected projects will address concepts and, in some cases, provide advancement in technologies related to habitation and operations, or environmental control and life support capabilities of a habitation system.

The seven NextSTEP habitat projects will have initial performance periods of up to 12 months, at a value of $400,000 to $1 million for the study and development efforts, and the potential for follow-on phases to be defined during the initial phase. The selected companies are:

  • Bigelow Aerospace LLC of North Las Vegas, Nevada
  • The Boeing Company of Pasadena, Texas
  • Dynetics Inc. of Huntsville, Alabama
  • Hamilton Sundstrand Space Systems International of Windsor Locks, Connecticut
  • Lockheed Martin Space Systems Company of Denver, Colorado
  • Orbital ATK of Dulles, Virginia
  • Orbital Technologies Corporation of Madison, Wisconsin

The CubeSat projects selected through this award will potentially fly as secondary payload missions on the first flight of the Space Launch System, Exploration Mission-1 (EM-1). CubeSat selections will address NASA’s strategic knowledge gaps in order to reduce risk, increase effectiveness, and improve the design of robotic and human space exploration.

EM-1 will provide a rare opportunity to boost these CubeSats to deep space and enable science, technology demonstration, exploration or commercial applications in that environment. The two NextSTEP CubeSat projects will have fixed-price contracts with technical and payment milestones and total values for the entire development and operations of $1.4 to $7.9 million per award. The selected companies are:

  • Lockheed Martin Space Systems Company of Denver, Colorado
  • Morehead State University of Morehead, Kentucky

NextSTEP activities will be executed through fixed-price contracts with milestone payments, combined with corporate-resource contributions the selected partner will provide toward overall study and technology development efforts, benefitting NASA and future commercial endeavors.

“This type of public-private partnership helps NASA stimulate the U.S. space industry while expanding the frontiers of knowledge, capabilities and opportunities in space,” said Jason Crusan, director of the Advanced Exploration Systems Division (AESD) of NASA’s Human Exploration and Operations Mission Directorate in Washington.

AESD manages NextSTEP and is committed to pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit.

For additional information about NASA’s Next Space Technologies for Exploration Partnerships, visit:

http://www.nasa.gov/nextstep

-end-