Deep Space Exploration

NASA Engineers Dream Big With Small Spacecraft

Posted on Updated on

 

 

MarCO CubeSat
An artist’s rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats — a kind of modular, mini-satellite — attempting to fly to another planet. They’re designed to fly along behind NASA’s InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight’s entry, descent and landing back to Earth. Though InSight’s mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. Credit: NASA/JPL

 

Many of NASA’s most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo — all large machines that could measure up to a school bus.

But in the past two decades, mini-satellites called CubeSats have made space accessible to a new generation. These briefcase-sized boxes are more focused in their abilities and have a fraction of the mass — and cost — of some past titans of space.

In May, engineers will be watching closely as NASA launches its first pair of CubeSats designed for deep space. The twin spacecraft are called Mars Cube One, or MarCO, and were built at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Read the rest of this entry »

SPACE-TIME: The Missing Mass Mystery

Posted on Updated on

By George McGinn
Cosmology and Space Research Institute

 
This illustration shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent. Credits: NASA, ESA, A. Field (STScI), and A. Riess (STScI/JHU)

 

I don’t believe in Dark Matter or Dark Energy. Even the new Dark Flow.

While I would like to think that our cosmologists and physicists got lazy, what I really believe is they just created placeholders, misleading ones at that, but I wholeheartedly agree that we have no idea what they are, do, or if they are even real.
 
I like to watch PBS Space-Time on YouTube, as Host and Physicist Matt O’Dowd* would discuss topics that are relevant today in our field, and there is something for everyone, from the novice to the professionals. And while he sometimes will do numerous episodes, like on Dark Matter and Dark Energy, I don’t always agree with what he’s talking about.
 
But after watching the episode below (it is an older one, but the information is as relevant today as it was when it was reported on), I had to post a reply (which is below) and a short explanation, as I am working on a research paper on Dark Matter, Dark Energy, and the new voodoo science of “Dark Flow,” which I will address in another post here.
 
 

Read the rest of this entry »

Celestial Cat Meets Cosmic Lobster

Posted on Updated on

Richard Hook
ESO Public Information Officer
Garching bei München, Germany

Astronomers have for a long time studied the glowing, cosmic clouds of gas and dust catalogued as NGC 6334 and NGC 6357, this gigantic new image from ESO’s Very Large Telescope Survey Telescope being only the most recent one. With around two billion pixels this is one of the largest images ever released by ESO. The evocative shapes of the clouds have led to their memorable names: the Cat’s Paw Nebula and the Lobster Nebula, respectively. Credit: ES  

 

NGC 6334 is located about 5500 light-years away from Earth, while NGC 6357 is more remote, at a distance of 8000 light-years. Both are in the constellation of Scorpius (The Scorpion), near the tip of its stinging tail.

The British scientist John Herschel first saw traces of the two objects, on consecutive nights in June 1837, during his three-year expedition to the Cape of Good Hope in South Africa. At the time, the limited telescopic power available to Herschel, who was observing visually, only allowed him to document the brightest “toepad” of the Cat’s Paw Nebula. It was to be many decades before the true shapes of the nebulae became apparent in photographs — and their popular names coined.

The three toepads visible to modern telescopes, as well as the claw-like regions in the nearby Lobster Nebula, are actually regions of gas — predominantly hydrogen — energised by the light of brilliant newborn stars. With masses around 10 times that of the Sun, these hot stars radiate intense ultraviolet light. When this light encounters hydrogen atoms still lingering in the stellar nursery that produced the stars, the atoms become ionised. Accordingly, the vast, cloud-like objects that glow with this light from hydrogen (and other) atoms are known as emission nebulae.


Read the rest of this entry »

Light Echoes Gives Clues To Protoplanetary Disk

Posted on Updated on

This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star’s magnetic field lines and is deposited onto the star’s surface. When material hits the star, it lights up brightly. Credits: NASA/JPL-Caltech

 

Imagine you want to measure the size of a room, but it’s completely dark. If you shout, you can tell if the space you’re in is relatively big or small, depending on how long it takes to hear the echo after it bounces off the wall. 

Astronomers use this principle to study objects so distant they can’t be seen as more than points. In particular, researchers are interested in calculating how far young stars are from the inner edge of their surrounding protoplanetary disks. These disks of gas and dust are sites where planets form over the course of millions of years.

  Read the rest of this entry »

NASA Extends Hubble Space Telescope Science Operations Contract

Posted on Updated on

 

Image of the Hubble Space Telescope in orbit taking photos of deep space objects. Credit NASA 

Hubble_Space_Telescope_Schematics.jpg
Components making up the Hubble Space Telescope. Credit NASA

This action will extend the period of performance from July 1 through June 30, 2021. The contract value will increase by approximately $196.3 million for a total contract value of $2.03 billion. 

This contract extension covers the work necessary to continue the science program of the Hubble mission by the Space Telescope Science Institute. The support includes the products and services required to execute science system engineering, science ground system development, science operations, science research, grants management and public outreach support for Hubble and data archive support for missions in the Mikulski Archive for Space Telescopes. 

James_Webb_Space_Telescope.jpg
To replace the Hubble in 2018, the James Webb Space Telescope is to be the premier telescope. Credit NASA

After the final space shuttle servicing mission to the telescope in 2009, Hubble is better than ever. Hubble is expected to continue to provide valuable data into the 2020’s, securing its place in history as an outstanding general purpose observatory in areas ranging from our solar system to the distant universe. 

In 2018, NASA’s James Webb Space Telescope will be launched into space as the premier observatory of the next decade, serving astronomers worldwide to build on Hubble’s legacy of discoveries and help unlock some of the biggest mysteries of the universe.

For information about NASA and agency programs, visit: http://www.nasa.gov

NASA Announces New Partnerships with U.S. Industry for Key Deep-Space Capabilities

Posted on Updated on

 

 Building on the success of NASA’s partnerships with commercial industry to date, NASA has selected 12 Next Space Technologies for Exploration Partnerships (NextSTEP) to advance concept studies and technology development projects in the areas of advanced propulsion, habitation and small satellites.

Through these public-private partnerships, selected companies will partner with NASA to develop the exploration capabilities necessary to enable commercial endeavors in space and human exploration to deep-space destinations such as the proving ground of space around the moon, known as cis-lunar space, and Mars.

“Commercial partners were selected for their technical ability to mature key technologies and their commitment to the potential applications both for government and private sector uses,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters. “This work ultimately will inform the strategy to move human presence further into the solar system.”

Results from these studies and hardware developments also will help determine the role for international partner involvement, by fully exploring domestic capabilities, and for Orion and Space Launch Systems missions in cis-lunar space. This work also will advance system understanding and define a need for further testing of habitation systems and components on the International Space Station.

Selected advanced electric propulsion projects will develop propulsion technology systems in the 50- to 300-kilowatt range to meet the needs of a variety of deep space mission concepts. State-of-the-art electric propulsion technology currently employed by NASA generates less than five kilowatts, and systems being developed for the Asteroid Redirect Mission (ARM) Broad Area Announcement (BAA) are in the 40-kilowatt range.

The three NextSTEP advanced propulsion projects, $400,000 to $3.5 million per year per award, will have no more than a three-year performance period focused on ground testing efforts. The selected companies are:

  • Ad Astra Rocket Company of Webster, Texas
  • Aeroject Rocketdyne Inc. of Redmond, Washington
  • MSNW LLC of Redmond, Washington

Habitation systems selections will help define the architecture and subsystems of a modular habitation capability to enable extended missions in deep space. Orion is the first component of human exploration beyond low-Earth orbit and will be capable of sustaining a crew of four for 21 days in deep space and returning them safely to Earth.

These selections are intended to augment the Orion capsule with the development of capabilities to initially sustain a crew of four for up to 60 days in cis-lunar space with the ability to scale up to transit habitation capabilities for future Mars missions. The selected projects will address concepts and, in some cases, provide advancement in technologies related to habitation and operations, or environmental control and life support capabilities of a habitation system.

The seven NextSTEP habitat projects will have initial performance periods of up to 12 months, at a value of $400,000 to $1 million for the study and development efforts, and the potential for follow-on phases to be defined during the initial phase. The selected companies are:

  • Bigelow Aerospace LLC of North Las Vegas, Nevada
  • The Boeing Company of Pasadena, Texas
  • Dynetics Inc. of Huntsville, Alabama
  • Hamilton Sundstrand Space Systems International of Windsor Locks, Connecticut
  • Lockheed Martin Space Systems Company of Denver, Colorado
  • Orbital ATK of Dulles, Virginia
  • Orbital Technologies Corporation of Madison, Wisconsin

The CubeSat projects selected through this award will potentially fly as secondary payload missions on the first flight of the Space Launch System, Exploration Mission-1 (EM-1). CubeSat selections will address NASA’s strategic knowledge gaps in order to reduce risk, increase effectiveness, and improve the design of robotic and human space exploration.

EM-1 will provide a rare opportunity to boost these CubeSats to deep space and enable science, technology demonstration, exploration or commercial applications in that environment. The two NextSTEP CubeSat projects will have fixed-price contracts with technical and payment milestones and total values for the entire development and operations of $1.4 to $7.9 million per award. The selected companies are:

  • Lockheed Martin Space Systems Company of Denver, Colorado
  • Morehead State University of Morehead, Kentucky

NextSTEP activities will be executed through fixed-price contracts with milestone payments, combined with corporate-resource contributions the selected partner will provide toward overall study and technology development efforts, benefitting NASA and future commercial endeavors.

“This type of public-private partnership helps NASA stimulate the U.S. space industry while expanding the frontiers of knowledge, capabilities and opportunities in space,” said Jason Crusan, director of the Advanced Exploration Systems Division (AESD) of NASA’s Human Exploration and Operations Mission Directorate in Washington.

AESD manages NextSTEP and is committed to pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit.

For additional information about NASA’s Next Space Technologies for Exploration Partnerships, visit:

http://www.nasa.gov/nextstep

-end-