Hubble Space Telescope

New Clues About How Ancient Galaxies Lit up the Universe

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
calla.e.cofield@jpl.nasa.gov 

 

This deep-field view of the sky (center) taken by NASA’s Hubble and Spitzer space telescopes is dominated by galaxies – including some very faint, very distant ones – circled in red. The bottom right inset shows the light collected from one of those galaxies during a long-duration observation.Credit: NASA/JPL-Caltech/ESA/Spitzer/P. Oesch/S. De Barros/I.Labbe

 

NASA’s Spitzer Space Telescope has revealed that some of the universe’s earliest galaxies were brighter than expected. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation. The finding offers clues to the cause of the Epoch of Reionization, a major cosmic event that transformed the universe from being mostly opaque to the brilliant starscape seen today. 

In a new study (Royal Astronomical Society), researchers report on observations of some of the first galaxies to form in the universe, less than 1 billion years after the big bang (or a little more than 13 billion years ago). The data show that in a few specific wavelengths of infrared light, the galaxies are considerably brighter than scientists anticipated. The study is the first to confirm this phenomenon for a large sampling of galaxies from this period, showing that these were not special cases of excessive brightness, but that even average galaxies present at that time were much brighter in these wavelengths than galaxies we see today. 

Read the rest of this entry »

Hubble Finds Big Brother of Halley’s Comet – Ripped Apart By White Dwarf

Posted on Updated on

February 9, 2017
European Space Agency News Release 


Siyi Xu
European Southern Observatory
Garching bei München, Germany

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
 

This artist’s impression shows a massive, comet-like object falling towards a white dwarf. New observations with the NASA/ESA Hubble Space Telescope show evidence for a belt of comet-like bodies orbiting the white dwarf, similar to the Kuiper Belt in our own Solar System. The findings also suggest the presence of one or more unseen surviving planets around the white dwarf which may have perturbed the belt sufficiently to hurl icy objects into the burned-out star. Credit: NASA, ESA, and Z. Levy (STScI)

 

The international team of astronomers observed the white dwarf WD 1425+540, about 170 light-years from Earth in the constellation Boötes (the Herdsman) [1]. While studying the white dwarf’s atmosphere using both the NASA/ESA Hubble Space Telescope and the W. M. Keck Observatory the team found evidence that an object rather like a massive comet was falling onto the star, getting tidally disrupted while doing so.

The team determined that the object had a chemical composition similar to the famous Halley’s Comet in our own Solar System, but it was 100,000 times more massive and had twice the proportion of water as its local counterpart. Spectral analysis showed that the destroyed object was rich in the elements essential for life, including carbon, oxygen, sulphur and even nitrogen [2].

Read the rest of this entry »

Celestial Cat Meets Cosmic Lobster

Posted on Updated on

Richard Hook
ESO Public Information Officer
Garching bei München, Germany

Astronomers have for a long time studied the glowing, cosmic clouds of gas and dust catalogued as NGC 6334 and NGC 6357, this gigantic new image from ESO’s Very Large Telescope Survey Telescope being only the most recent one. With around two billion pixels this is one of the largest images ever released by ESO. The evocative shapes of the clouds have led to their memorable names: the Cat’s Paw Nebula and the Lobster Nebula, respectively. Credit: ES  

 

NGC 6334 is located about 5500 light-years away from Earth, while NGC 6357 is more remote, at a distance of 8000 light-years. Both are in the constellation of Scorpius (The Scorpion), near the tip of its stinging tail.

The British scientist John Herschel first saw traces of the two objects, on consecutive nights in June 1837, during his three-year expedition to the Cape of Good Hope in South Africa. At the time, the limited telescopic power available to Herschel, who was observing visually, only allowed him to document the brightest “toepad” of the Cat’s Paw Nebula. It was to be many decades before the true shapes of the nebulae became apparent in photographs — and their popular names coined.

The three toepads visible to modern telescopes, as well as the claw-like regions in the nearby Lobster Nebula, are actually regions of gas — predominantly hydrogen — energised by the light of brilliant newborn stars. With masses around 10 times that of the Sun, these hot stars radiate intense ultraviolet light. When this light encounters hydrogen atoms still lingering in the stellar nursery that produced the stars, the atoms become ionised. Accordingly, the vast, cloud-like objects that glow with this light from hydrogen (and other) atoms are known as emission nebulae.


Read the rest of this entry »

Water Vapor Plumes Discovered on Jupiter’s Moon Europa

Posted on Updated on

Written by George McGinn
Cosmology and Space Research
September 27, 2016 at 4:32pm EST

This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by NASA’s Hubble’s Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. Hubble’s ultraviolet sensitivity allowed for the features — rising over 100 miles (160 kilometers) above Europa’s icy surface — to be discerned. The water is believed to come from a subsurface ocean on Europa. The Hubble data were taken on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions. Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center


In one of the most promising places in the Solar System where life may exist, astronomers using NASA’s Hubble Space Telescope have photographed what appears to be water vapor plumes escaping Jupiter’s moon Europa.

The team from the Space Telescope Science Institute (STScI) in Baltimore saw finger-like projections when viewing Europa as it past in front of Jupiter, according to team leader William Sparks.

The discovery occurred by accident as the team’s original proposal was to observe Europa to determine if it had an atmosphere or exosphere.

An exosphere of neon was detected on Earth’s Moon on August 17, 2015 based on study the data from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft.

Read the rest of this entry »

NASA Extends Hubble Space Telescope Science Operations Contract

Posted on Updated on

 

Image of the Hubble Space Telescope in orbit taking photos of deep space objects. Credit NASA 

Hubble_Space_Telescope_Schematics.jpg
Components making up the Hubble Space Telescope. Credit NASA

This action will extend the period of performance from July 1 through June 30, 2021. The contract value will increase by approximately $196.3 million for a total contract value of $2.03 billion. 

This contract extension covers the work necessary to continue the science program of the Hubble mission by the Space Telescope Science Institute. The support includes the products and services required to execute science system engineering, science ground system development, science operations, science research, grants management and public outreach support for Hubble and data archive support for missions in the Mikulski Archive for Space Telescopes. 

James_Webb_Space_Telescope.jpg
To replace the Hubble in 2018, the James Webb Space Telescope is to be the premier telescope. Credit NASA

After the final space shuttle servicing mission to the telescope in 2009, Hubble is better than ever. Hubble is expected to continue to provide valuable data into the 2020’s, securing its place in history as an outstanding general purpose observatory in areas ranging from our solar system to the distant universe. 

In 2018, NASA’s James Webb Space Telescope will be launched into space as the premier observatory of the next decade, serving astronomers worldwide to build on Hubble’s legacy of discoveries and help unlock some of the biggest mysteries of the universe.

For information about NASA and agency programs, visit: http://www.nasa.gov

Cloudy Days on Exoplanets May Hide Atmospheric Water

Posted on Updated on

Hot Jupiters, exoplanets around the same size as Jupiter that orbit very closely to their stars, often have cloud or haze layers in their atmospheres. This may prevent space telescopes from detecting atmospheric water that lies beneath the clouds, according to a study in the Astrophysical Journal. Image credit: NASA/JPL-Caltech

 

Water is a hot topic in the study of exoplanets, including “hot Jupiters,” whose masses are similar to that of Jupiter, but which are much closer to their parent star than Jupiter is to the sun. They can reach a scorching 2,000 degrees Fahrenheit (1,100 degrees Celsius), meaning any water they host would take the form of water vapor.

Astronomers have found many hot Jupiters with water in their atmospheres, but others appear to have none. Scientists at NASA’s Jet Propulsion Laboratory, Pasadena, California, wanted to find out what the atmospheres of these giant worlds have in common.

Researchers focused on a collection of hot Jupiters studied by NASA’s Hubble Space Telescope. They found that the atmospheres of about half of the planets were blocked by clouds or haze.

“The motivation of our study was to see what these planets would be like if they were grouped together, and to see whether they share any atmospheric properties,” said Aishwarya Iyer, a JPL intern and master’s degree candidate at California State University, Northridge, who led the study.

The new study, published in the June 1 issue of the Astrophysical Journal, suggests that clouds or haze layers could be preventing a substantial amount of atmospheric water from being detected by space telescopes. The clouds themselves are likely not made of water, as the planets in this sample are too hot for water-based clouds. 

“Clouds or haze seem to be on almost every planet we studied,” Iyer said. “You have to be careful to take clouds or haze into account, or else you could underestimate the amount of water in an exoplanet’s atmosphere by a factor of two.”

In the study, scientists looked at a set of 19 hot Jupiters previously observed by Hubble. The telescope’s Wide Field Camera 3 had detected water vapor in the atmospheres of 10 of these planets, and no water on the other nine. But that information was spread across more than a dozen studies. The methods of analyzing and interpretation varied because the studies were conducted separately. There had not been one overarching analysis of all these planets.

To compare the planets and look for patterns, the JPL team had to standardize the data: Researchers combined the datasets for all 19 hot Jupiters to create an average overall light spectrum for the group of planets. They then compared these data to models of clear, cloud-free atmospheres and those with various cloud thicknesses.

The scientists determined that, for almost every planet they studied, haze or clouds were blocking half of the atmosphere, on average.

“In some of these planets, you can see water peeking its head up above the clouds or haze, and there could still be more water below,” Iyer said.

Scientists do not yet know the nature of these clouds or hazes, including what they are they made of.

“Clouds or haze being on almost all these planets is pretty surprising,” said Robert Zellem, a postdoctoral fellow at JPL and co-author of the study.

The implications of this result agree with findings published in the Dec. 14, 2015, issue of the journal Nature. The Nature study used data from NASA’s Hubble and Spitzer Space Telescopes to suggest that clouds or haze could be hiding undetected water in hot Jupiters. This new study uses exoplanet data from a single instrument on Hubble to uniformly characterize a larger group of hot Jupiters, and is the first to quantify how much of the atmosphere would be shielded as a result of clouds or haze.

The new research could have implications for follow-up studies with future space observatories, such as NASA’s James Webb Space Telescope. Exoplanets with thick cloud covers blocking the detection of water and other substances may be less desirable targets for more extensive study.

These results are also important for figuring out how planets form, scientists say.

“Did these planets form in their current positions or migrate toward their host stars from farther out? Understanding the abundances of molecules such as water helps us answer those questions,” Zellem said.

“This paper is an exciting step forward for the study of exoplanets and comparing their properties,” said Mark Swain, study co-author and group supervisor for the exoplanet discovery and science group at JPL.

Michael Line of the University of California, Santa Cruz, also contributed to the study. Other co-authors from JPL included Gael Roudier, Graca Rocha and John Livingston.

For more information about the Hubble Space Telescope, visit: www.nasa.gov/hubble.

Galaxy Clusters Reveal New Dark Matter Insights

Posted on Updated on

This comparison of galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog shows a spread-out cluster (left) and a more densely-packed cluster (right). A new study shows that these differences are related to the surrounding dark-matter environment. Credit: Sloan Digital Sky Survey


Editor’s Note: This story would have been up at 3:30pm on Monday, however, my tablet kept rebooting itself after an iOS update. Here it is, and it very interesting.


Dark matter is a mysterious cosmic phenomenon that accounts for 27 percent of all matter and energy. Though dark matter is all around us, we cannot see it or feel it. But scientists can infer the presence of dark matter by looking at how normal matter behaves around it.

Galaxy clusters, which consist of thousands of galaxies, are important for exploring dark matter because they reside in a region where such matter is much denser than average. Scientists believe that the heavier a cluster is, the more dark matter it has in its environment. But new research suggests the connection is more complicated than that. 

“Galaxy clusters are like the large cities of our universe. In the same way that you can look at the lights of a city at night from a plane and infer its size, these clusters give us a sense of the distribution of the dark matter that we can’t see,” said Hironao Miyatake at NASA’s Jet Propulsion Laboratory, Pasadena, California.

A new study in Physical Review Letters, led by Miyatake, suggests that the internal structure of a galaxy cluster is linked to the dark matter environment surrounding it. This is the first time that a property besides the mass of a cluster has been shown to be associated with surrounding dark matter.

Warping Galaxies
This image from NASA’s Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe. Credit: NASA/ESA/JPL-Caltech/Yale/CNRS

Researchers studied approximately 9,000 galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog, and divided them into two groups by their internal structures: one in which the individual galaxies within clusters were more spread out, and one in which they were closely packed together. The scientists used a technique called gravitational lensing — looking at how the gravity of clusters bends light from other objects — to confirm that both groups had similar masses.

But when the researchers compared the two groups, they found an important difference in the distribution of galaxy clusters. Normally, galaxy clusters are separated from other clusters by 100 million light-years on average. But for the group of clusters with closely packed galaxies, there were fewer neighboring clusters at this distance than for the sparser clusters. In other words, the surrounding dark-matter environment determines how packed a cluster is with galaxies.

“This difference is a result of the different dark-matter environments in which the groups of clusters formed. Our results indicate that the connection between a galaxy cluster and surrounding dark matter is not characterized solely by cluster mass, but also its formation history,” Miyatake said.

Study co-author David Spergel, professor of astronomy at Princeton University in New Jersey, added, “Previous observational studies had shown that the cluster’s mass is the most important factor in determining its global properties. Our work has shown that ‘age matters’: Younger clusters live in different large-scale dark-matter environments than older clusters.”

The results are in line with predictions from the leading theory about the origins of our universe. After an event called cosmic inflation, a period of less than a trillionth of a second after the big bang, there were small changes in the energy of space called quantum fluctuations. These changes then triggered a non-uniform distribution of matter. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe.

“The connection between the internal structure of galaxy clusters and the distribution of surrounding dark matter is a consequence of the nature of the initial density fluctuations established before the universe was even one second old,” Miyatake said. 

Researchers will continue to explore these connections.

“Galaxy clusters are remarkable windows into the mysteries of the universe. By studying them, we can learn more about the evolution of large-scale structure of the universe, and its early history, as well as dark matter and dark energy,” Miyatake said.

 

 

 

 

NASA Space Telescopes See Magnified Image of Faintest Galaxy from Early Universe

Posted on Updated on

This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. Image credit: NASA, ESA, and Pontificia Universidad Católica de Chile

 

 

Astronomers harnessing the combined power of NASA’s Hubble and Spitzer space telescopes have found the faintest object ever seen in the early universe. It existed about 400 million years after the big bang, 13.8 billion years ago.

The team has nicknamed the object Tayna, which means “first-born” in Aymara, a language spoken in the Andes and Altiplano regions of South America.

Though Hubble and Spitzer have detected other galaxies that are record-breakers for distance, this object represents a smaller, fainter class of newly forming galaxies that until now had largely evaded detection. These very dim objects may be more representative of the early universe, and offer new insight on the formation and evolution of the first galaxies.

“Thanks to this detection, the team has been able to study for the first time the properties of extremely faint objects formed not long after the big bang,” said lead author Leopoldo Infante, an astronomer at the Pontifical Catholic University of Chile. The remote object is part of a discovery of 22 young galaxies at ancient times located nearly at the observable horizon of the universe. This research means there is a substantial increase in the number of known very distant galaxies.

The results are published in the December 3 issue of The Astrophysical Journal.

The new object is comparable in size to the Large Magellanic Cloud, a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate 10 times faster than the Large Magellanic Cloud. The object might be the growing core of what will likely evolve into a full-sized galaxy.

The small and faint galaxy was only seen thanks to a natural “magnifying glass” in space. As part of its Frontier Fields program, Hubble observed a massive cluster of galaxies, MACS0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. This giant cluster acts as a powerful natural lens by bending and magnifying the light of far more distant objects behind it. Like a zoom lens on a camera, the cluster¹s gravity boosts the light of the distant proto-galaxy to make it look 20 times brighter than normal. The phenomenon is called gravitational lensing and was proposed by Albert Einstein as part of his General Theory of Relativity.

The galaxy’s distance was estimated by building a color profile from combined Hubble and Spitzer observations. The expansion of the universe causes the light from distant galaxies to be stretched or reddened with increasing distance. Though many of the galaxy’s new stars are intrinsically blue-white, their light has been shifted into infrared wavelengths that are measurable by Hubble and Spitzer. Absorption by intervening cool intergalactic hydrogen also makes the galaxies look redder.

This finding suggests that the very early universe will be rich in galaxy targets for the upcoming James Webb Space Telescope to uncover. Astronomers expect that Webb will allow us to see the embryonic stages of galaxy birth shortly after the big bang.

For more information, visit http://www.nasa.gov/hubble or http://www.nasa.gov/spitzer.

 

Dawn’s Ceres Color Map Reveals Surface Diversity

Posted on

 

Dawn’s First Color Map of Ceres Dawn VIR Images of Ceres This map-projected view of Ceres was created from images taken by NASA’s Dawn spacecraft during its initial approach to the dwarf planet, prior to being captured into orbit in March 2015. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
 


A new color map of dwarf planet Ceres, which NASA’s Dawn spacecraft has been orbiting since March, reveals the diversity of the surface of this planetary body. Differences in morphology and color across the surface suggest Ceres was once an active body, Dawn researchers said today at the 2015 General Assembly of the European Geosciences Union in Vienna. 

“This dwarf planet was not just an inert rock throughout its history. It was active, with processes that resulted in different materials in different regions. We are beginning to capture that diversity in our color images,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. 

The Dawn mission made history on March 6 as the first spacecraft to reach a dwarf planet, and the first spacecraft to orbit two extraterrestrial targets. Previously, Dawn studied giant asteroid Vesta from 2011 to 2012, uncovering numerous insights about its geology and history. While Vesta is a dry body, Ceres is believed to be 25 percent water ice by mass. By comparing Vesta and Ceres, scientists hope to gain a better understanding of the formation of the solar system. 

Ceres’ surface is heavily cratered, as expected, but appears to have fewer large craters than scientists anticipated. It also has a pair of very bright neighboring spots in its northern hemisphere. More detail will emerge after the spacecraft begins its first intensive science phase on April 23, from a distance of 8,400 miles (13,500 kilometers) from the surface, said Martin Hoffmann, investigator on the Dawn framing camera team, based at the Max Planck Institute for Solar System Research, Göttingen, Germany. 

The visible and infrared mapping spectrometer (VIR), an imaging spectrometer that examines Ceres in visible and infrared light, has been examining the relative temperatures of features on Ceres’ surface. Preliminary examination suggests that different bright regions on Ceres’ surface behave differently, said Federico Tosi, investigator from the VIR instrument team at the Institute for Space Astrophysics and Planetology, and the Italian National Institute for Astrophysics, Rome. 

Based on observations from NASA’s Hubble Space Telescope, planetary scientists have identified 10 bright regions on Ceres’ surface. One pair of bright spots, by far the brightest visible marks on Ceres, appears to be located in a region that is similar in temperature to its surroundings. But a different bright feature corresponds to a region that is cooler than the rest of Ceres’ surface. 

The origins of Ceres’ bright spots, which have captivated the attention of scientists and the public alike, remain unknown. It appears the brightest pair is located in a crater 57 miles (92 kilometers) wide. As Dawn gets closer to the surface of Ceres, better-resolution images will become available.

“The bright spots continue to fascinate the science team, but we will have to wait until we get closer and are able to resolve them before we can determine their source,” Russell said. 

Both Vesta and Ceres are located in the main asteroid belt between Mars and Jupiter. The Dawn spacecraft will continue studying Ceres through June 2016. 

Dawn’s mission is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California, for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: 

http://dawn.jpl.nasa.gov/mission/

For more information about Dawn, visit:

http://dawn.jpl.nasa.gov

The Solar System and Beyond is Awash in Water

Posted on Updated on

NASA is exploring our solar system and beyond to understand the workings of the universe, searching for water and life among the stars. Image credit: NASA

As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways. 

“NASA science activities have provided a wave of amazing findings related to water in recent years that inspire us to continue investigating our origins and the fascinating possibilities for other worlds, and life, in the universe,” said Ellen Stofan, chief scientist for the agency. “In our lifetime, we may very well finally answer whether we are alone in the solar system and beyond.”

The chemical elements in water, hydrogen and oxygen, are some of the most abundant elements in the universe. Astronomers see the signature of water in giant molecular clouds between the stars, in disks of material that represent newborn planetary systems, and in the atmospheres of giant planets orbiting other stars. 

There are several worlds thought to possess liquid water beneath their surfaces, and many more that have water in the form of ice or vapor. Water is found in primitive bodies like comets and asteroids, and dwarf planets like Ceres. The atmospheres and interiors of the four giant planets — Jupiter, Saturn, Uranus and Neptune — are thought to contain enormous quantities of the wet stuff, and their moons and rings have substantial water ice.

Perhaps the most surprising water worlds are the five icy moons of Jupiter and Saturn that show strong evidence of oceans beneath their surfaces: Ganymede, Europa and Callisto at Jupiter, and Enceladus and Titan at Saturn. 

Scientists using NASA’s Hubble Space Telescope recently provided powerful evidence that Ganymede has a saltwater, sub-surface ocean, likely sandwiched between two layers of ice. 

Europa and Enceladus are thought to have an ocean of liquid water beneath their surface in contact with mineral-rich rock, and may have the three ingredients needed for life as we know it: liquid water, essential chemical elements for biological processes, and sources of energy that could be used by living things. NASA’s Cassini mission has revealed Enceladus as an active world of icy geysers. Recent research suggests it may have hydrothermal activity on its ocean floor, an environment potentially suitable for living organisms. 

NASA spacecraft have also found signs of water in permanently shadowed craters on Mercury and our moon, which hold a record of icy impacts across the ages like cryogenic keepsakes.

While our solar system may seem drenched in some places, others seem to have lost large amounts of water. 

On Mars, NASA spacecraft have found clear evidence that the Red Planet had water on its surface for long periods in the distant past. NASA’s Curiosity Mars Rover discovered an ancient streambed that existed amidst conditions favorable for life as we know it.

More recently, NASA scientists using ground-based telescopes were able to estimate the amount of water Mars has lost over the eons. They concluded the planet once had enough liquid water to form an ocean occupying almost half of Mars’ northern hemisphere, in some regions reaching depths greater than a mile (1.6 kilometers). But where did the water go? 

It’s clear some of it is in the Martian polar ice caps and below the surface. We also think much of Mars’ early atmosphere was stripped away by the wind of charged particles that streams from the sun, causing the planet to dry out. NASA’s MAVEN mission is hard at work following this lead from its orbit around Mars. 

The story of how Mars dried out is intimately connected to how the Red Planet’s atmosphere interacts with the solar wind. Data from the agency’s solar missions — including STEREO, Solar Dynamics Observatory and the planned Solar Probe Plus — are vital to helping us better understand what happened.

Understanding the distribution of water in our solar system tells us a great deal about how the planets, moons, comets and other bodies formed 4.5 billion years ago from the disk of gas and dust that surrounded our sun. The space closer to the sun was hotter and drier than the space farther from the sun, which was cold enough for water to condense. The dividing line, called the “frost line,” sat around Jupiter’s present-day orbit. Even today, this is the approximate distance from the sun at which the ice on most comets begins to melt and become “active.” Their brilliant spray releases water ice, vapor, dust and other chemicals, which are thought to form the bedrock of most worlds of the frigid outer solar system.

Scientists think it was too hot in the solar system’s early days for water to condense into liquid or ice on the inner planets, so it had to be delivered — possibly by comets and water-bearing asteroids. NASA’s Dawn mission is currently studying Ceres, which is the largest body in the asteroid belt between Mars and Jupiter. Researchers think Ceres might have a water-rich composition similar to some of the bodies that brought water to the three rocky, inner planets, including Earth.

The amount of water in the giant planet Jupiter holds a critical missing piece to the puzzle of our solar system’s formation. Jupiter was likely the first planet to form, and it contains most of the material that wasn’t incorporated into the sun. The leading theories about its formation rest on the amount of water the planet soaked up. To help solve this mystery, NASA’s Juno mission will measure this important quantity beginning in mid-2016.

Looking further afield, observing other planetary systems as they form is like getting a glimpse of our own solar system’s baby pictures, and water is a big part of that story. For example, NASA’s Spitzer Space Telescope has observed signs of a hail of water-rich comets raining down on a young solar system, much like the bombardment planets in our solar system endured in their youth. 

With the study of exoplanets — planets that orbit other stars — we are closer than ever to finding out if other water-rich worlds like ours exist. In fact, our basic concept of what makes planets suitable for life is closely tied to water: Every star has a habitable zone, or a range of distances around it in which temperatures are neither too hot nor too cold for liquid water to exist. NASA’s planet-hunting Kepler mission was designed with this in mind. Kepler looks for planets in the habitable zone around many types of stars.

Recently verifying its thousandth exoplanet, Kepler data confirm that the most common planet sizes are worlds just slightly larger than Earth. Astronomers think many of those worlds could be entirely covered by deep oceans. Kepler’s successor, K2, continues to watch for dips in starlight to uncover new worlds. 

The agency’s upcoming TESS mission will search nearby, bright stars in the solar neighborhood for Earth- and super-Earth-sized exoplanets. Some of the planets TESS discovers may have water, and NASA’s next great space observatory, the James Webb Space Telescope, will examine the atmospheres of those special worlds in great detail. 

It’s easy to forget that the story of Earth’s water, from gentle rains to raging rivers, is intimately connected to the larger story of our solar system and beyond. But our water came from somewhere — every world in our solar system got its water from the same shared source. So it’s worth considering that the next glass of water you drink could easily have been part of a comet, or an ocean moon, or a long-vanished sea on the surface of Mars. And note that the night sky may be full of exoplanets formed by similar processes to our home world, where gentle waves wash against the shores of alien seas.