Jupiter

What’s Up – October 2019

Posted on Updated on

Published by NASA

moonjournal_main
Celebrate International Observe the Moon Night with NASA on October 5! Credit: NASA/JPL

 

Link to article with video: https://www.jpl.nasa.gov/video/details.php?id=1588

Link to page: International Observe the Moon Night, Oct 5, 2019

What can you see in the October sky? Join the global celebration of International Observe the Moon Night on Oct. 5th, then try to catch the ice giant planets Uranus and Neptune, which are well placed for viewing in the late night sky.

Transcript:

What’s Up for October? A night for the whole world to observe the Moon and hunting for ice giants!

International Observe the Moon Night is Oct. 5th. It’s an annual celebration of lunar observation and exploration. Events are scheduled in lots of places around the world, so there may be one near you. But all you really need to participate is to go out and look up.

The event is timed to coincide with the first quarter moon. This allows for some great observing along the lunar terminator – the line that divides the dayside from the nightside. With even a small pair of binoculars, you can see some great details as features like mountains and craters pop up into the light. Learn more and look for events in your area at moon.nasa.gov/observe.

October is a great time to try and capture an ICE GIANT. Now, these aren’t mythical creatures. They’re planets – the most distant of the major planets of our solar system, Uranus and Neptune.

The four giant planets of our solar system are not created equal. The gas giants, Jupiter and Saturn, are much bigger and way more massive, while the ice giants are so named because they contain a much higher amount of materials that typically form ices in the frigid depths of the outer solar system.

In October, both Uranus and Neptune are well placed in the late night sky. In fact, you can see all four giant planets in the same evening if you look for Jupiter and Saturn in the west after sunset, and then come back a couple of hours later to spot Uranus and Neptune. (Think of it as your own personal “Voyager mission.” NASA’s Voyager 2 is the only spacecraft to have visited the ice giants so far, although scientists are eager to go back for a more detailed study.)

Unlike Jupiter and Saturn, the ice giants are quite faint, so the best way to observe them is with a telescope, and from personal experience, it’s much easier to find them if you have a computer-controlled mount that can automatically point the telescope for you. If you don’t have access to one, find a local event with the Night Sky Network at nightsky.jpl.nasa.gov. Otherwise, sky watching apps can help you star-hop your way to these two incredibly distant planets.

Now be advised, because they’re so far away, each planet appears as just a point of light. But with a modest telescope, you’ll see Uranus as a tiny disk. You’d be forgiven for mistaking Neptune as a star – it’s the same size as Uranus, but much farther away, so it’s fainter.

The ice giants are elusive, but well worth the effort to say you’ve seen them with your own eyes.

Here are the phases of the Moon for October. You can catch up on all of NASA’s current and future missions at nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

 

Water Vapor Plumes Discovered on Jupiter’s Moon Europa

Posted on Updated on

Written by George McGinn
Cosmology and Space Research
September 27, 2016 at 4:32pm EST

This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by NASA’s Hubble’s Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. Hubble’s ultraviolet sensitivity allowed for the features — rising over 100 miles (160 kilometers) above Europa’s icy surface — to be discerned. The water is believed to come from a subsurface ocean on Europa. The Hubble data were taken on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions. Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center


In one of the most promising places in the Solar System where life may exist, astronomers using NASA’s Hubble Space Telescope have photographed what appears to be water vapor plumes escaping Jupiter’s moon Europa.

The team from the Space Telescope Science Institute (STScI) in Baltimore saw finger-like projections when viewing Europa as it past in front of Jupiter, according to team leader William Sparks.

The discovery occurred by accident as the team’s original proposal was to observe Europa to determine if it had an atmosphere or exosphere.

An exosphere of neon was detected on Earth’s Moon on August 17, 2015 based on study the data from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft.

Read the rest of this entry »

NASA’s Juno to Soar Closest to Jupiter This Saturday

Posted on Updated on

This dual view of Jupiter was taken on August 23, when NASA’s Juno spacecraft was 2.8 million miles (4.4 million kilometers) from the gas giant planet on the inbound leg of its initial 53.5-day capture orbit. Image credit: NASA/JPL-Caltech/SwRI/MSSS


This Saturday at 5:51 a.m. PDT, (8:51 a.m. EDT, 12:51 UTC) NASA’s Juno spacecraft will get closer to the cloud tops of Jupiter than at any other time during its prime mission. At the moment of closest approach, Juno will be about 2,600 miles (4,200 kilometers) above Jupiter’s swirling clouds and traveling at 130,000 mph (208,000 kilometers per hour) with respect to the planet. There are 35 more close flybys of Jupiter scheduled during its prime mission (scheduled to end in February of 2018). The Aug. 27 flyby will be the first time Juno will have its entire suite of science instruments activated and looking at the giant planet as the spacecraft zooms past.

“This is the first time we will be close to Jupiter since we entered orbit on July 4,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute in San Antonio. “Back then we turned all our instruments off to focus on the rocket burn to get Juno into orbit around Jupiter. Since then, we have checked Juno from stem to stern and back again. We still have more testing to do, but we are confident that everything is working great, so for this upcoming flyby Juno’s eyes and ears, our science instruments, will all be open.”

“This is our first opportunity to really take a close-up look at the king of our solar system and begin to figure out how he works,” Bolton said.

While the science data from the pass should be downlinked to Earth within days, interpretation and first results are not expected for some time.

“No other spacecraft has ever orbited Jupiter this closely, or over the poles in this fashion,” said Steve Levin, Juno project scientist from NASA’s Jet Propulsion Laboratory in Pasadena, California. “This is our first opportunity and there are bound to be surprises. We need to take our time to make sure our conclusions are correct.”

Not only will Juno’s suite of eight science instruments be on, the spacecraft’s visible light imager — JunoCam will also be snapping some closeups. A handful of JunoCam images, including the highest resolution imagery of the Jovian atmosphere and the first glimpse of Jupiter’s north and south poles, are expected to be released during the later part of next week.

The Juno spacecraft launched on Aug. 5, 2011, from Cape Canaveral, Florida. JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. Caltech, in Pasadena, California, manages JPL for NASA.

More information on the Juno mission is available at: http://www.nasa.gov/juno

Follow the mission on Facebook and Twitter at: http://www.facebook.com/NASAJuno or http://www.twitter.com/NASAJuno

NASA’s Juno Spacecraft in Orbit Around Mighty Jupiter

Posted on Updated on

The Juno team celebrates at NASA’s Jet Propulsion Laboratory in Pasadena, California, after receiving data indicating that NASA’s Juno mission entered orbit around Jupiter. Rick Nybakken, Juno project manager at JPL, is seen at the center hugging JPL’s acting director for solar system exploration, Richard Cook. Image Credit: NASA/JPL-Caltech

 

Note from George McGinn: Yesterday I watched NASA’s briefing, and the Juno Spacecraft did something nearly impossible. The largest danger to the mission is the immense radiation. Jupiter’s version of Earth’s Van Allen belt have been catching huge amounts of solar radiation for 4.5 billion years. The gravity of Jupiter is so strong that it pulls more charged particles than would directly hit it. The Juno team estimated that the spacecraft will be exposed to radiation at LD25 (LD is Leathal Dose and 25 means 25 times, so 25 times the lethal dose to a human), or having 1 million dental X-rays all at once (in a space of 2 seconds). This is equal to 260 rads.

I applaud the Juno’s team, who worked almost 12 years to get this spacecraft safely in orbit. I am excited to see finally how deep the atmosphere goes, what gases make up Jupiter, and if there is a solid or semi-solid center, or just compressed gases. And can all that gas create the large magnetic field, or what is in the center, the speed of spin, and the chemical makeup. 

 

After an almost five-year journey to the solar system’s largest planet, NASA’s Juno spacecraft successfully entered Jupiter’s orbit during a 35-minute engine burn. Confirmation that the burn had completed was received on Earth at 8:53 pm. PDT (11:53 p.m. EDT) Monday, July 4.

“Independence Day always is something to celebrate, but today we can add to America’s birthday another reason to cheer — Juno is at Jupiter,” said NASA Administrator Charlie Bolden. “And what is more American than a NASA mission going boldly where no spacecraft has gone before? With Juno, we will investigate the unknowns of Jupiter’s massive radiation belts to delve deep into not only the planet’s interior, but into how Jupiter was born and how our entire solar system evolved.” 

Confirmation of a successful orbit insertion was received from Juno tracking data monitored at the navigation facility at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, as well as at the Lockheed Martin Juno operations center in Denver. The telemetry and tracking data were received by NASA’s Deep Space Network antennas in Goldstone, California, and Canberra, Australia.

“This is the one time I don’t mind being stuck in a windowless room on the night of the Fourth of July,” said Scott Bolton, principal investigator of Juno from Southwest Research Institute in San Antonio. “The mission team did great. The spacecraft did great. We are looking great. It’s a great day.”

Preplanned events leading up to the orbital insertion engine burn included changing the spacecraft’s attitude to point the main engine in the desired direction and then increasing the spacecraft’s rotation rate from 2 to 5 revolutions per minute (RPM) to help stabilize it..

The burn of Juno’s 645-Newton Leros-1b main engine began on time at 8:18 p.m. PDT (11:18 p.m. EDT), decreasing the spacecraft’s velocity by 1,212 mph (542 meters per second) and allowing Juno to be captured in orbit around Jupiter. Soon after the burn was completed, Juno turned so that the sun’s rays could once again reach the 18,698 individual solar cells that give Juno its energy.

“The spacecraft worked perfectly, which is always nice when you’re driving a vehicle with 1.7 billion miles on the odometer,” said Rick Nybakken, Juno project manager from JPL. “Jupiter orbit insertion was a big step and the most challenging remaining in our mission plan, but there are others that have to occur before we can give the science team members the mission they are looking for.”

 

This is the final view taken by the JunoCam instrument on NASA’s Juno spacecraft before Juno’s instruments were powered down in preparation for orbit insertion. Juno obtained this color view on June 29, 2016, at a distance of 3.3 million miles (5.3 million kilometers) from Jupiter. Image Credit: NASA/JPL-Caltech (Click image for full-size)


Over the next few months, Juno’s mission and science teams will perform final testing on the spacecraft’s subsystems, final calibration of science instruments and some science collection.

“Our official science collection phase begins in October, but we’ve figured out a way to collect data a lot earlier than that,” said Bolton. “Which when you’re talking about the single biggest planetary body in the solar system is a really good thing. There is a lot to see and do here.” 

Juno’s principal goal is to understand the origin and evolution of Jupiter. With its suite of nine science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras. The mission also will let us take a giant step forward in our understanding of how giant planets form and the role these titans played in putting together the rest of the solar system. As our primary example of a giant planet, Jupiter also can provide critical knowledge for understanding the planetary systems being discovered around other stars. 

The Juno spacecraft launched on Aug. 5, 2011, from Cape Canaveral Air Force Station in Florida. JPL manages the Juno mission for NASA. Juno is part of NASA’s New Frontiers Program, managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft. The California Institute of Technology in Pasadena manages JPL for NASA.

More information on the Juno mission is available at: http://www.nasa.gov/juno

Follow the mission on Facebook and Twitter at: http://www.facebook.com/NASAJuno or http://www.twitter.com/NASAJuno

NASA Announces Coverage, Media Activities for Juno Mission Arrival at Jupiter

Posted on Updated on

NASA’s solar-powered Juno spacecraft will arrive at Jupiter July 4, 2016. Credits: NASA

 

This Fourth of July, NASA’s solar-powered Juno spacecraft will arrive at Jupiter after an almost five-year journey. News briefings, photo opportunities and other media events will be held at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, and air live on NASA Television and the agency’s website. 

Juno was launched August 5, 2011 from Cape Canaveral in Florida on an Atlas V rocket. It was estimated to take five years for the satellite to reach Jupiter, the only other gas giant without a dedicated satellite.

In the evening of July 4, Juno will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour (542 meters per second) so it can be captured into the gas giant’s orbit. Once in Jupiter’s orbit, the spacecraft will circle the Jovian world 37 times during 20 months, skimming to within 3,100 miles (5,000 kilometers) above the cloud tops. This is the first time a spacecraft will orbit the poles of Jupiter, providing new answers to ongoing mysteries about the planet’s core, composition and magnetic fields.

Juno will improve our understanding of the solar system’s beginnings by revealing the origin and evolution of Jupiter.

Specifically, Juno will… 

  • Determine how much water is in Jupiter’s atmosphere, which helps determine which planet formation theory is correct (or if new theories are needed)
  • Look deep into Jupiter’s atmosphere to measure composition, temperature, cloud motions and other properties
  • Map Jupiter’s magnetic and gravity fields, revealing the planet’s deep structure
  • Explore and study Jupiter’s magnetosphere near the planet’s poles, especially the auroras – Jupiter’s northern and southern lights – providing new insights about how the planet’s enormous magnetic force field affects its atmosphere.

Juno’s principal goal is to understand the origin and evolution of Jupiter. Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our solar system during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars.

With its suite of science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras.

While the events below are for the media, the public is invited to watch each of the events starting on June 16. The following are televised events are: 

NASA TV Events Schedule 

For all media briefings, reporters may ask questions by phone by contacting Gina Fontes at 818-354-9380 or georgina.d.fontes@jpl.nasa.gov. All times are Eastern.
 

Thursday, June 16
2 p.m. — Mission status briefing at NASA Headquarters in Washington

Thursday, June 30
4 p.m. — Mission overview news briefing at JPL
5 p.m. — Mission outreach briefing at JPL

Monday, July 4 – Orbit Insertion Day
Noon — Pre-orbit insertion briefing at JPL
10:30 p.m. — Orbit insertion and NASA TV commentary begin

Tuesday, July 5
1 a.m. — Post-orbit insertion briefing at JPL

 

To watch all of these events online, visit: http://www.nasa.gov/nasatv or http://www.ustream.tv/nasa or http://www.ustream.tv/nasajpl


Additional material on Juno’s mission was added from additional sources by George McGinn to add more about why these events are important to planetary science.  – George McGinn 

Hubble’s View of Ganymede — Briefing Materials

Posted on Updated on

Image%20of%20Jupiter%27s%20moon%2C%20GanymedeThis image of Ganymede, one of Jupiter’s moons and the largest moon in our solar system was taken by NASA’s Galileo spacecraft. Credits: NASAM ultimedia Files

NASA is hosting a teleconference at 11 a.m. EDT on Thursday, March 12, to discuss Hubble Space Telescope’s observations of Ganymede, Jupiter’s largest moon. These results will help scientists in the search for habitable worlds beyond Earth.

Speakers/Presenters

  • Jim Green, director of Planetary Science, NASA Headquarters, Washington
  • Joachim Saur, professor for geophysics, University of Cologne, Germany
  • Jennifer Wiseman, Hubble senior project scientist, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • Heidi Hammel, executive vice president, Association of Universities for Research in Astronomy, Washington
     


Figure: 1 — GANYMEDE VIDEO

Caption: This is a video clip of what Ganymede looks like, based on images from NASA’s Galileo orbiter. The US Geological Survey has classified the surface of Ganymede into the types of terrain. The brown regions are those that are heavily cratered and much older than the light shaded regions that are smoother with few craters. These lighter shaded regions are believed to be formed by flooding of the surface with water coming from faults or even cryo-volcanos that have taken place over billions of years. Perhaps even tectonic processes are at work with some crustal ice sheets being forced downward by the emergence of newer icy material. The Galileo spacecraft made six close flybys of the Ganymede and detected a magnetic field coming from the moon itself. In addition, the best models of Ganymede from the Galileo data showed a deep ocean under a thick ice crust. Credit: NASA, USGS


 

Figure: 2 — CUTAWAY OF THE MOON GANYMEDE

CUTAWAY OF THE MOON GANYMEDE

Caption: This is an illustration of the interior of Jupiter’s largest moon Ganymede. It is based on theoretical models, in-situ observations by NASA’s Galileo orbiter, and Hubble Space Telescope observations of the moon’s magnetosphere, which allows for a probe of the moon’s interior. The cake-layering of the moon shows that ices and a saline ocean dominate the outer layers. A denser rock mantle lies deeper in the moon, and finally an iron core beneath that. Credit: NASA, ESA, and A. Feild (STScI)


 

Figure: 3 — GANYMEDE’S MAGNETIC FIELD

This is a sketch of the magnetic field lines around Ganymede, which are generated in the moon’s iron core.

Caption: This is a sketch of the magnetic field lines around Ganymede, which are generated in the moon’s iron core. Hubble Space Telescope measurements of Ganymede’s aurorae, which follow magnetic field lines, suggest that a subsurface saline ocean also influences the behavior of the moon’s aurorae. Credit: NASA, ESA, and A. Feild (STScI)


 

Figure: 4 — GANYMEDE’S AURORAL BELTS- OVERLAY IMAGE

Hubble images of Ganymede's auroral belts (colored blue in this illustration).

Caption: NASA Hubble Space Telescope images of Ganymede’s auroral belts (colored blue in this illustration) are overlaid on a Galileo orbiter image of the moon. The amount of rocking of the moon’s magnetic field provided evidence that the moon has a subsurface saltwater ocean.  Credit: NASA/ESA


 

Figure: 5 — ARTIST CONCEPTION OF GANYMEDE – MAGNETIC FIELDS

In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter.

Caption: In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. NASA’s Hubble Space Telescope observed aurorae on the moon controlled by Ganymede’s magnetic fields. This field is embedded in Jupiter’s own immense magnetosphere (yellow field lines). A saline ocean under the moon’s icy crust reduces shifting in the auroral belts as measured by Hubble. Credit: NASA/ESA


 

 

Figure: 6 — ARTIST CONCEPTION OF GANYMEDE

Artist concept of Ganymede orbiting Jupiter.

Caption: In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. NASA’s Hubble Space Telescope observed aurorae on the moon controlled by Ganymede’s magnetic fields. A saline ocean under the moon’s icy crust reduces shifting in the auroral belts as measured by Hubble. Credit: NASA/ESA


 

Figure: 7 — PLOT OF THE ROCKING OF GANYMEDE’S MAGNETIC FIELD

This chart plots the excursion of a pair of auroral belts on Jupiter’s moon Ganymede.

Caption: This chart plots the excursion of a pair of auroral belts on Jupiter’s moon Ganymede. Their motion provides insight into the moon’s interior. Ganymede has a magnetic field produced by an iron core. Because Ganymede is close to Jupiter, it is also embedded in Jupiter’s own magnetic field. When Jupiter’s magnetic field changes, the aurorae on Ganymede also change, “rocking” back and forth. This amount of rocking is inhibited if the moon has a subsurface ocean. By watching the rocking motion of the two aurorae, scientists were able to determine that a large amount of saltwater exists beneath Ganymede’s crust, affecting its magnetic field. Credit: NASA, ESA, and A. Feild (STScI)



New Desktop Application Has Potential to Increase Asteroid Detection, Now Available to Public

Posted on Updated on



NASA’s Asteroid Data Hunter contest series was part of NASA’s Asteroid Grand Challenge, which is focused on finding all asteroid threats to human populations and knowing what to do about them. (Image Credit: NASA)


PRESS RELEASE (NASA) – A software application based on an algorithm created by a NASA challenge has the potential to increase the number of new asteroid discoveries by amateur astronomers.

Analysis of images taken of our solar system’s main belt asteroids between Mars and Jupiter using the algorithm showed a 15 percent increase in positive identification of new asteroids.

During a panel Sunday at the South by Southwest Festival in Austin, Texas, NASA representatives discussed how citizen scientists have made a difference in asteroid hunting. They also announced the release of a desktop software application developed by NASA in partnership with Planetary Resources, Inc., of Redmond, Washington. The application is based on an Asteroid Data Hunter-derived algorithm that analyzes images for potential asteroids. It’s a tool that can be used by amateur astronomers and citizen scientists.

The Asteroid Data Hunter challenge was part of NASA’s Asteroid Grand Challenge. The data hunter contest series, which was conducted in partnership with Planetary Resources under a Space Act Agreement, was announced at the 2014 South by Southwest Festival and concluded in December. The series offered a total of $55,000 in awards for participants to develop significantly improved algorithms to identify asteroids in images captured by ground-based telescopes. The winning solutions of each piece of the contest combined to create an application using the best algorithm that increased the detection sensitivity, minimized the number of false positives, ignored imperfections in the data, and ran effectively on all computer systems.

“The Asteroid Grand Challenge is seeking non-traditional partnerships to bring the citizen science and space enthusiast community into NASA’s work,” said Jason Kessler, program executive for NASA’s Asteroid Grand Challenge. “The Asteroid Data Hunter challenge has been successful beyond our hopes, creating something that makes a tangible difference to asteroid hunting astronomers and highlights the possibility for more people to play a role in protecting our planet.”

Catalina Sky Survey telescope

The Big Dipper rising behind the Catalina Sky Survey 60″ telescope. 

Image Credit: Catalina Sky Survey, University of Arizona

The data hunter challenge incorporated data provided by the Minor Planet Center (MPC), at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and images provided by the Catalina Sky Survey, an astronomical survey project run by the University of Arizona, Tucson, and focused on the discovery and study of near-Earth asteroids and comets.

“We applaud all the participants in the Asteroid Data Hunter challenge. We are extremely encouraged by the algorithm created and it’s already making a difference. This increase in knowledge will help assess more quickly which asteroids are potential threats, human destinations or resource rich,” said Chris Lewicki, president and chief engineer at Planetary Resources. “It has been exciting for our team to work with NASA on this project, and we also look forward to future space-based systems leveraging these results.”

Astronomers find asteroids by taking images of the same place in the sky and looking for star-like objects that move between frames, an approach that has been used since before Pluto was discovered in 1930. With more telescopes scanning the sky, the ever-increasing volume of data makes it impossible for astronomers to verify each detection by hand. This new algorithm gives astronomers the ability to use computers to autonomously and rapidly check the images and determine which objects are suitable for follow up, which leads to finding more asteroids than previously possible.

“The beauty of such archives is that the data doesn’t grow stale, and with novel approaches, techniques and algorithms, they can be harvested for new information. The participants of the Asteroid Data Hunter challenge did just that, probing observations of the night sky for new asteroids that might have slipped through the software cracks the first time the images were analyzed,” said Jose Luis Galache of the MPC. “Moreover, this software can now be used to analyze new images and is available to any observer who wants to use it. The Minor Planet Center applauds these efforts to provide superior tools to all, and looks forward to receiving new asteroid observations generated with them.”

The desktop software application is free and can be used on any basic desktop or laptop computer. Amateur astronomers may take images from their telescopes and analyze them with the application. The application will tell the user whether a matching asteroid record exists and offer a way to report new findings to the Minor Planet Center, which then confirms and archives new discoveries.

Through NASA’s asteroid initiative, the agency seeks to enhance its ongoing work in the identification and characterization of near-Earth objects for further scientific investigation. This work includes locating potentially hazardous asteroids and identifying those viable for redirection to a stable lunar orbit for future exploration by astronauts using NASA’s Space Launch System rocket and Orion spacecraft. The Asteroid Grand Challenge, one part of the asteroid initiative, expands the agency’s efforts beyond traditional boundaries and encourages partnerships and collaboration with a variety of organizations.

The algorithm contests were managed and executed by NASA’s Center of Excellence for Collaborative Innovation (CoECI). CoECI was established at the request of the White House Office of Science and Technology Policy to advance NASA’s open innovation efforts and extend that expertise to other federal agencies. CoECI uses the NASA Tournament Lab (NTL) for its advanced algorithmic and software development contests. Through its contract with the Crowd Innovation Lab at Harvard University, NTL uses Appirio’s Crowdsourcing platform powered by Topcoder to enable a community of more than 750,000 designers, developers and data scientists to create the most innovative, efficient and optimized solutions for specific, real-world challenges faced by NASA. Data storage of the Catalina Sky Survey data was provided by Amazon Web Services.

The new asteroid hunting application can be downloaded at:

http://topcoder.com/asteroids

For information about NASA’s Asteroid Grand Challenge, visit:

http://www.nasa.gov/asteroidinitiative

NASA’s Hubble Observations Suggest Underground Ocean on Jupiter’s Largest Moon

Posted on Updated on



In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. NASA’s Hubble Space Telescope observed aurorae on the moon generated by Ganymede’s magnetic fields. A saline ocean under the moon’s icy crust best explains shifting in the auroral belts measured by Hubble. Image Credit: NASA/ESA



NASA’s Hubble Space Telescope has the best evidence yet for an underground saltwater ocean on Ganymede, Jupiter’s largest moon. The subterranean ocean is thought to have more water than all the water on Earth’s surface.

Identifying liquid water is crucial in the search for habitable worlds beyond Earth and for the search of life as we know it.

“This discovery marks a significant milestone, highlighting what only Hubble can accomplish,” said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, Washington. “In its 25 years in orbit, Hubble has made many scientific discoveries in our own solar system. A deep ocean under the icy crust of Ganymede opens up further exciting possibilities for life beyond Earth.”

Ganymede is the largest moon in our solar system and the only moon with its own magnetic field. The magnetic field causes aurorae, which are ribbons of glowing, hot electrified gas, in regions circling the north and south poles of the moon. Because Ganymede is close to Jupiter, it is also embedded in Jupiter’s magnetic field. When Jupiter’s magnetic field changes, the aurorae on Ganymede also change, “rocking” back and forth.

By watching the rocking motion of the two aurorae, scientists were able to determine that a large amount of saltwater exists beneath Ganymede’s crust affecting its magnetic field.

Hubble telescope image of Ganymede auroral belts

NASA Hubble Space Telescope images of Ganymede’s auroral belts (colored blue in this illustration) are overlaid on a Galileo orbiter image of the moon. The amount of rocking of the moon’s magnetic field suggests that the moon has a subsurface saltwater ocean.

Image Credit: NASA/ESA

A team of scientists led by Joachim Saur of the University of Cologne in Germany came up with the idea of using Hubble to learn more about the inside of the moon.

“I was always brainstorming how we could use a telescope in other ways,” said Saur. “Is there a way you could use a telescope to look inside a planetary body? Then I thought, the aurorae! Because aurorae are controlled by the magnetic field, if you observe the aurorae in an appropriate way, you learn something about the magnetic field. If you know the magnetic field, then you know something about the moon’s interior.”

If a saltwater ocean were present, Jupiter’s magnetic field would create a secondary magnetic field in the ocean that would counter Jupiter’s field. This “magnetic friction” would suppress the rocking of the aurorae. This ocean fights Jupiter’s magnetic field so strongly that it reduces the rocking of the aurorae to 2 degrees, instead of the 6 degrees, if the ocean was not present.

Scientists estimate the ocean is 60 miles (100 kilometers) thick – 10 times deeper than Earth’s oceans – and is buried under a 95-mile (150-kilometer) crust of mostly ice.

Scientists first suspected an ocean in Ganymede in the 1970s, based on models of the large moon. NASA’s Galileo mission measured Ganymede’s magnetic field in 2002, providing the first evidence supporting those suspicions. The Galileo spacecraft took brief “snapshot” measurements of the magnetic field in 20-minute intervals, but its observations were too brief to distinctly catch the cyclical rocking of the ocean’s secondary magnetic field.

The new observations were done in ultraviolet light and could only be accomplished with a space telescope high above the Earth’s atmosphere, which blocks most ultraviolet light.

NASA’s Hubble Space Telescope is celebrating 25 years of groundbreaking science on April 24. It has transformed our understanding of our solar system and beyond, and helped us find our place among the stars. To join the conversation about 25 years of Hubble discoveries, use the hashtag #Hubble25.

Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble

and

http://hubblesite.org/news/2015/09

NASA Holds Teleconference on Hubble Observations of Jupiter’s Largest Moon

Posted on Updated on

NASA Holds Teleconference on Hubble Observations of Jupiter’s Largest Moon
(March 9, 2015)

Image of Jupiter's moon, GanymedeThis image of Ganymede, one of Jupiter’s moons and the largest moon in our solar system was taken by NASA’s Galileo spacecraft. Image Credit: NASA

NASA will host a teleconference at 11 a.m. EDT on Thursday, March 12, to discuss Hubble Space Telescope’s observations of Ganymede, Jupiter’s largest moon. These results will help scientists in the search for habitable worlds beyond Earth.

Participants in the teleconference will be:

  • Jim Green, director of Planetary Science, NASA Headquarters, Washington
  • Joachim Saur, professor for geophysics, University of Cologne, Germany
  • Jennifer Wiseman, Hubble senior project scientist, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • Heidi Hammel, executive vice president, Association of Universities for Research in Astronomy, Washington

To participate by phone, reporters must contact Felicia Chou at felicia.chou and provide their media affiliation no later than noon Wednesday.

Audio of the teleconference will be streamed live on NASA’s website at:

http://www.nasa.gov/newsaudio

For information about NASA’s Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

For information about our solar system, including Jupiter and Ganymede, visit:

https://solarsystem.nasa.gov/planets/