Manned Mars Mission

NASA, UN Announce Final Winner of #whyspacematters Photo Competition

Posted on Updated on

February 23, 2016
RELEASE 16-021


NOTE: While this is a press release that will also appear on the Press Release page, The editors felt that this might also appeal to the general audience. It talks about both the US Astronaut Scott Kelly who spent one year in space to study the effects of prolonged exposure to the rigors of space, and the announcement of the winner of a year-long photo contest on “Why Space Matters.”


Each month, NASA astronaut Scott Kelly will announce the winning photo of the #whyspacematters competition by posting it to his Instagram account @StationCDRKelly. Credits: UNOOSA


As astronaut Scott Kelly’s one-year mission aboard the International Space Station draws to a close, NASA and the United Nations Office for Outer Space Affairs (UNOOSA) are announcing the final winner of a global photography competition highlighting how the vantage point of space helps us better understand our home planet and provide benefits to humanity. 

NASA and UNOOSA invited the public to submit photos depicting why space matters to us all in our daily lives as a way to highlight the application of space-based science and technologies. In response, hundreds of participants from around the world posted pictures on Instagram using the hashtag #whyspacematters.

Kelly, who is scheduled to depart the space station and return to Earth on March 1, announced winning photos each month by posting them from his Instagram account @StationCDRKelly.

“Of course, I think space matters in a multitude of ways, but it’s been inspiring to see this proof that you don’t have to be an astronaut to recognize that,” Kelly said. “Space technology and research is impacting the lives of people around the world. Over the past year, I’ve been able to play a personal role in some of that research, and by speaking up about why it’s important, everyone who participated has played a part of their own.”

The winning photos for each month, from June 2015 to January, ranged from a striking Earth-bound, long-exposure image of the night sky in December to a view of solar panels on a roof in Mexico in September, to a photo of a female Nigerian firefighter using a NASA-developed breathing apparatus in June.

To view all of the winning photos, and read the associated stories from the #whyspacematters competition, visit: http://www.unoosa.org/oosa/contests/whyspacematters/

Kelly and Russian Cosmonaut Mikhail Kornienko have spent nearly a year in space to improve our understanding of the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight, an important step in research into the effects of long-term space habitation as part of NASA’s Journey to Mars

“It was an honor to have Scott Kelly share his experience in space with the United Nations. This campaign helped to promote the use of space science and technologies in such areas as disaster risk reduction, tracking the effects of climate change and in the equality of access to education and telemedicine,” said UNOOSA Director Simonetta Di Pippo.

Scientists worldwide use NASA data to tackle some of the biggest questions about how our planet is changing now and how Earth could change in the future. From rising sea levels to the changing availability of freshwater, NASA enables studies that unravel the complexities of our planet from the highest reaches of Earth’s atmosphere to its core.

The International Space Station is a convergence of science, technology and human innovation that enables us to demonstrate new technologies and make research breakthroughs not possible on Earth. It has been continuously occupied since November 2000 and, since then, has been visited by more than 200 people and a variety of international and commercial spacecraft. The space station remains the springboard to NASA’s next giant leap in exploration, including future missions to an asteroid and Mars.

For more information about the International Space Station and its crews and research, visit: http://www.nasa.gov/station

 

Media Invited to See NASA’s Orion Crew Module for its Journey to Mars

Posted on Updated on

January 20, 2016
MEDIA ADVISORY M16-005

*** NOTE: Press release are usually published under that page “Media Releases (Information for Journalist).” These press releases are usually meetings or presentation of studies. The public will most of the time have access to view or listen to most of these, but only credentialed media can ask question.

Also, before the meeting documentation may be made available, sometimes weeks before the meeting. If the documents are embargoed, we in the press know that means the information cannot be published before the embargo date and time. We use the time to pre-write our stories and prepare questions, but the embargo must be honored by all.

–  George McGinn, Examining Life (And Things of Interest), Daily Defense News and Cosmology and Space Exploration news websites.


Orion’s pressure vessel was completed Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the spacecraft’s underlying structure on which all of the spacecraft’s systems and subsystems are built and integrated. (Credit: NASA)

 

NASA’s Orion crew module will be available to media at two NASA locations Jan. 26th and in early February, as engineers continue to prepare the spacecraft to send astronauts deeper into space than ever before, including to an asteroid placed in lunar orbit and on the journey to Mars.

At 10:30 a.m. EST on Tuesday, Jan. 26, the agency’s Michoud Assembly Facility in New Orleans will host a media viewing and facility tour of the spacecraft’s recently completed pressure vessel, the underlying structure of the crew module, before it ships to NASA’s Kennedy Space Center in Florida.

To attend the event at Michoud, reporters must contact Chip Howat at 504-257-0478 or carl.j.howat@nasa.gov by 3 p.m. Monday, Jan. 25. International media accreditation for this event is closed.

The Orion pressure vessel provides a sealed environment for astronaut life support in future human-rated crew modules. Technicians at Michoud began welding together the seven large aluminum pieces of Orion’s primary structure in precise detail last September. At Kennedy, Orion will be outfitted with the spacecraft’s systems and subsystems, processed and integrated with NASA’s Space Launch System (SLS) ahead of their first joint exploration mission, or EM-1.

Michoud also is where the massive core stage of SLS is being manufactured. Reporters will be able to view tooling and newly manufactured hardware for SLS, and hear about mission progress from personnel across NASA.

Individuals available for interviews during the tour include:

  • Bill Hill, deputy associate administrator for Exploration Systems Development at NASA Headquarters in Washington
  • Mike Sarafin, EM-1 mission manager at NASA Headquarters
  • Mark Kirasich, Orion program manager at NASA’s Johnson Space Center in Houston
  • Scott Wilson, Orion production manager at Kennedy
  • John Honeycutt, SLS program manager at the agency’s Marshall Space Flight Center in Huntsville, Alabama
  • Steve Doering, SLS core stage manager at Marshall
  • Mike Bolger, Ground Systems Development and Operations program manager at Kennedy
  • NASA astronaut Rick Mastracchio
  • Mike Hawes, Orion program manager for Lockheed Martin
  • Jim Bray, crew module director for Lockheed Martin 

Orion will depart Michoud on or about Feb. 1 and travel to Kennedy aboard NASA’s Super Guppy airplane. Additional details for Orion’s arrival at Kennedy, including media accreditation, are forthcoming.

For more information about Orion, visit: http://www.nasa.gov/orion

-end- 

 

NASA Announces Journey to Mars Challenge, Seeks Public Input on Establishing Sustained Human Presence on Red Planet

Posted on Updated on

  

What do you need to bring, and how do you minimize the need for delivery of future supplies in order to establish a sustained human presence on a planet 140 million miles away from Earth?

NASA is embarking on an ambitious journey to Mars and Tuesday announced a challenge inviting the public to write down their ideas, in detail, for developing the elements of space pioneering necessary to establish a continuous human presence on the Red Planet. This could include shelter, food, water, breathable air, communication, exercise, social interactions and medicine, but participants are encouraged to consider innovative and creative elements beyond these examples.

Participants are asked to describe one or more Mars surface systems or capabilities and operations that are needed to achieve this goal and, to the greatest extent possible, are technically achievable, economically sustainable, and minimize reliance on support from Earth. NASA expects to make up to three awards at a minimum of $5,000 each from a total award pool of $15,000.

NASA’s efforts for sending humans to Mars is well underway today, with spacecraft monitoring Mars from orbit and rovers on the surface. The International Space Station is testing systems and is being used to learn more about the health impacts of extended space travel. NASA also is testing and developing its next generation of launch and crew vehicles — the Space Launch System rocket and Orion crewed spacecraft.  

NASA’s two-prong approach is to build reusable space capabilities and incorporate commercial and international partners. By developing new technologies along the way and creating the systems necessary to maintain a permanent human presence in deep space, humanity will pioneer space, pushing out into the solar system to stay.

Given spacecraft limitations on weight and volume — and a minimum 500 days between resupply opportunities — innovative solutions are required for a mission to Mars that is not dependent on Earth for resources.

NASA seeks technical submissions that describe the development of capabilities and operational events necessary, in both the near- and long-term, to advance this bold journey. Submissions may consist of proposed approaches, capabilities, systems or a set of integrated systems that enable or enhance a sustained human presence on Mars. Solutions should include the assumptions, analysis, and data that justify their value. Submissions should include a process to develop, test, implement, and operate the system or capability.

Submissions will be judged on relevance, creativity, simplicity, resource efficiency, feasibility, comprehensiveness and scalability.

For more information about the challenge, and details on how to apply, visit: https://www.innocentive.com/pavilion/NASA

For more information about NASA’s journey to Mars, see: https://www.nasa.gov/topics/journeytomars

NASA Release:
May 05, 2015
RELEASE 15-072

NASA Awards Radiation Challenge Winners, Next Round Seeking Ideas for Protecting Humans on the Journey to Mars

Posted on Updated on

 
This illustration depicts our heliosphere, showing the approximate locations of Voyager 1 and Voyager 2 spacecraft. Galactic cosmic rays originate outside the heliosphere and stream in uniformly from all directions. Image Credit: NASA
 
NASA awarded $12,000 to five winners of a challenge to mitigate radiation exposure on deep space missions and launched a new follow-on challenge to identify innovative ways of protecting crews on the journey to Mars.

The follow-on challenge offers an award of up to $30,000 for design ideas to protect the crew on long-duration space missions. Anyone can participate in the challenge, which will be open Wednesday, April 29 through Monday, June 29, 2015.

“We are very impressed with the enthusiasm and sheer number of people from the public who showed interest in solving this very difficult problem for human space exploration,” said Steve Rader, deputy manager of the Center of Excellence for Collaborative Innovation. “We look forward to seeing what people will come up with in this next challenge to find the optimal configuration for these different protection approaches.”

Galactic cosmic rays (GCRs), high-energy radiation that originates outside the solar system are a major issue facing future space travelers venturing beyond low-Earth orbit. These charged particles permeate the universe and exposure to them is inevitable during space exploration. Because missions to Mars will require crews to remain beyond the protection of Earth’s magnetic field and atmosphere for approximately 500 days and potentially more than 1,000 days, learning how to protect human explorers from the effect of exposure to GCRs is a high priority.

While the five winners selected in the first challenge did not identify a solution that ultimately solves the problem of GCR risk to human crews, the first place idea did provide a novel approach to using and configuring known methods of protection to save substantial launch mass and lower launch costs over multiple missions. The other winning submissions all provided solid proposed configurations on known approaches and were supported with sound engineering and mathematics.

NASA received 136 submissions. The five selected winners are:

  • 1st place ($5,000): George Hitt, assistant professor of Physics and Nuclear Engineering at Khalifa University, United Arab Emirates, for his novel idea on reusing a shield that could be placed in a Mars Transfer Orbit.
  • 2nd Place ($3,000): Ian Gallon, retired researcher in electro-magnetics of Bridport, England, for his mathematical details on what it would take for an active radiation mitigation system to function well.
  • 3rd Place ($2,000): Olivier Loido, freelance engineer of Toulouse, France, for his concepts for a launch configuration and deploying an array of magnets.
  • 4th Place ($1,000 each): Markus Novak, recent graduate from Ohio State University of Dublin, Ohio, for his creation of safe areas through particle trajectory simulations, and Mikhail Petrichenkov of Russia for his concept of operations making use of NASA Storm Shelter work.

NASA’s goal is to identify key solutions that will reduce crew members’ total radiation dose from exposure to GCRs on long duration deep space missions by at least a factor of four.

In a continued effort to achieve that goal, the agency has developed a second challenge that asks the public for ideas on optimal configurations of active and passive solutions to provide crew members maximum protection. Active protection uses magnetic or electrostatic fields to deflect the harmful radiation, while passive protection uses material layering to shield the crew from the GCRs.

These challenges are managed by the Center of Excellence for Collaborative Innovation (CoECI). CoECI is a multi-center organization established at the request of the White House Office of Science and Technology Policy to advance NASA’s open innovation efforts and extend that expertise to other federal agencies. CoECI is directly supported by the Human Health and Performance Directorate at NASA’s Johnson Space Center in Houston. The challenges are hosted on the NASA Innovation Pavilion through its contract with InnoCentive, Inc.

To participate in the challenge beginning April 29, visit:

https://www.innocentive.com/pavilion/NASA

For additional information about the galactic cosmic ray challenges, visit:

http://go.nasa.gov/1Es4AgJ