Mars Mission

NASA’s InSight ‘Hears’ Peculiar Sounds on Mars

Posted on Updated on

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
andrew.c.good@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

 

 

Clouds drift over the dome-covered seismometer
NASA’s InSight used its Instrument Context Camera (ICC) beneath the lander’s deck to image these drifting clouds at sunset. This series of images was taken on April 25, 2019, the 145th Martian day, or sol, of the mission, starting at around 6:30 p.m. Mars local time. Credit: NASA/JPL-Caltech

 

Put an ear to the ground on Mars and you’ll be rewarded with a symphony of sounds. Granted, you’ll need superhuman hearing, but NASA’s InSight lander comes equipped with a very special “ear.”

The spacecraft’s exquisitely sensitive seismometer, called the Seismic Experiment for Interior Structure (SEIS), can pick up vibrations as subtle as a breeze. The instrument was provided by the French space agency, Centre National d’Études Spatiales (CNES), and its partners.

Read the rest of this entry »

NASA’s InSight Detects First Likely ‘Quake’ on Mars

Posted on Updated on

Dwayne Brown / Alana Johnson
Headquarters, Washington

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

This image of InSight’s seismometer was taken on the 110th Martian day, or sol, of the mission. The seismometer is called Seismic Experiment for Interior Structure, or SEIS. Credit: NASA/JPL-Caltech

 

NASA’s Mars InSight lander has measured and recorded for the first time ever a likely “marsquake.”

 

The faint seismic signal, detected by the lander’s Seismic Experiment for Interior Structure (SEIS) instrument, was recorded on April 6, the lander’s 128th Martian day, or sol. This is the first recorded trembling that appears to have come from inside the planet, as opposed to being caused by forces above the surface, such as wind. Scientists still are examining the data to determine the exact cause of the signal.

 

Read the rest of this entry »

NASA’s Opportunity Rover Mission on Mars Comes to End

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / JoAnna Wendel
NASA Headquarters, Washington

 

Artist’s Concept of Rover on Mars. Image credit: NASA/JPL/Cornell University


One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission is at an end after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet. 

The Opportunity rover stopped communicating with Earth when a severe Mars-wide dust storm blanketed its location in June 2018. After more than a thousand commands to restore contact, engineers in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL) made their last attempt to revive Opportunity Tuesday, to no avail. The solar-powered rover’s final communication was received June 10.

Read the rest of this entry »

NASA Engineers Dream Big With Small Spacecraft

Posted on Updated on

 

 

MarCO CubeSat
An artist’s rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats — a kind of modular, mini-satellite — attempting to fly to another planet. They’re designed to fly along behind NASA’s InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight’s entry, descent and landing back to Earth. Though InSight’s mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. Credit: NASA/JPL

 

Many of NASA’s most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo — all large machines that could measure up to a school bus.

But in the past two decades, mini-satellites called CubeSats have made space accessible to a new generation. These briefcase-sized boxes are more focused in their abilities and have a fraction of the mass — and cost — of some past titans of space.

In May, engineers will be watching closely as NASA launches its first pair of CubeSats designed for deep space. The twin spacecraft are called Mars Cube One, or MarCO, and were built at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Read the rest of this entry »

A Mixed-reality Trip to Mars

Posted on Updated on

Ceremonial_Ribbon_Cutting__Destiny_Mars.jpg
A ceremonial ribbon is cut for the opening of new “Destination: Mars” experience at the Kennedy Space Center visitor complex in Florida. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California. Photo credit: NASA/Charles Babir

 

It’ll be years before the first astronauts leave the launch pad on Earth to journey to Mars. But starting Sept. 19, visitors to the Kennedy Space Center visitor complex in Florida will get a taste of what those astronauts will see when they touch down on the Red Planet.

“Destination: Mars,” a mixed-reality experience designed by NASA’s Jet Propulsion Laboratory, Pasadena, California, and Microsoft HoloLens, held a kick-off event for media at the Visitor Complex on Sept. 18. The experience uses real imagery taken by NASA’s Mars Curiosity rover to let users explore the Martian surface.

Read the rest of this entry »

Site List Narrows For NASA’s Next Mars Landing

Posted on Updated on

Possible_landing_Sites_on_Mars.jpg
Out of more than 30 sites considered as possible landing targets for NASA’s Mars Science Laboratory mission, by November 2008 four of the most intriguing places on Mars rose to the final round of the site-selection process. Image credit: NASA/JPL-Caltech

 

PASADENA, Calif. — Four intriguing places on Mars have risen to the final round as NASA selects a landing site for its next Mars mission, the Mars Science Laboratory.

The agency had a wider range of possible landing sites to choose from than for any previous mission, thanks to the Mars Science Laboratory’s advanced technologies, and the highly capable orbiters helping this mission identify scientifically compelling places to explore.

Mars Science Laboratory project leaders at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., chose the four this month, after seeking input from international Mars experts and from engineers working on the landing system and rover capabilities. 

The sites, alphabetically, are: Eberswalde, where an ancient river deposited a delta in a possible lake; Gale, with a mountain of stacked layers including clays and sulfates; Holden, a crater containing alluvial fans, flood deposits, possible lake beds and clay-rich deposits; and Mawrth, which shows exposed layers containing at least two types of clay. 

“All four of these sites would be great places to use our roving laboratory to study the processes and history of early Martian environments and whether any of these environments were capable of supporting microbial life and its preservation as biosignatures,” said John Grotzinger of the California Institute of Technology, Pasadena. He is the project scientist for the Mars Science Laboratory.

The mission’s capabilities for landing more precisely than ever before and for generating electricity without reliance on sunshine have made landing sites eligible that would not have been acceptable for past Mars missions. During the past two years, multiple observations of dozens of candidate sites by NASA’s Mars Reconnaissance Orbiter have augmented data from earlier orbiters for evaluating sites’ scientific attractions and engineering risks.

JPL is assembling and testing the Mars Science Laboratory spacecraft for launch in fall 2009. Paring the landing-site list to four finalists allows the team to focus further on evaluating the sites and planning the navigation. The mission plan calls for the rover to spend a full Mars year (23 months) examining the environment with a diverse payload of tools.

After evaluating additional Mars orbiter observations of the four sites, NASA will hold a fourth science workshop about the candidates in the spring and plans to choose a final site next summer. Three previous landing-site science workshops for Mars Science Laboratory, in 2006, 2007 and two months ago, drew participation of more than 100 Mars scientists and presentations about more than 30 sites. The four sites rated highest by participants in the latest workshop were the same ones chosen by mission leaders after a subsequent round of safety evaluations and analysis of terrain for rover driving. One site, Gale, had been a favorite of scientists considering 2004 landing sites for NASA’s Spirit and Opportunity rovers, but was ruled out as too hazardous for the capabilities of those spacecraft.

“Landing on Mars always is a risky balance between science and engineering. The safest sites are flat, but the spectacular geology is generally where there are ups and downs, such as hills and canyons. That’s why we have engineered this spacecraft to make more sites qualify as safe,” said JPL’s Michael Watkins, mission manager for the Mars Science Laboratory. “This will be the first spacecraft that can adjust its course as it descends through the Martian atmosphere, responding to variability in the atmosphere. This ability to land in much smaller areas than previous missions, plus capabilities to land at higher elevations and drive farther, allows us consider more places the scientists want to explore.”

For their Mars landings in 2004, Spirit and Opportunity needed safe target areas about 70 kilometers (about 40 miles) long. Mars Science Laboratory is designed to hit a target area roughly 20 kilometers (12 miles) in diameter. Also, a new “skycrane” technology to lower the rover on a tether for the final touchdown can accommodate more slope than the airbag method used for Spirit and Opportunity. In addition, a radioisotope power supply, like that used by Mars Viking landers in the 1970s, will enable year-round operation farther from the equator than the solar power systems of more recent missions.

Gale is near the equator, Eberswalde and Holden are farther south, and Mawrth is in the north.

As a clay-bearing site where a river once flowed into a lake, Eberswalde Crater offers a chance to use knowledge that oil industry geologists have accumulated about locations of the most promising parts of a delta to look for any concentrations of carbon chemistry that is crucial to life.

The mountain inside Gale Crater could provide a route for the rover to drive up a 5-kilometer (3-mile) sequence of layers, studying a transition from environments that produced clay deposits near the bottom to later environments that produced sulfate deposits partway up.

Running water once carved gullies and deposited sediments as alluvial fans and catastrophic flood deposits in Holden Crater, a site that may also present the chance to evaluate layers deposited in a lake.  Exploration of key features within this target area would require drives to the edge of a broad valley, and then down into the valley.

Mawrth Valley is an apparent flood channel near the edge of vast Martian highlands. It holds different types of clays in clearly layered context, offering an opportunity for studying the changes in wet conditions that produced or altered the clays.  The clay signatures are stronger than at the other sites, and this is the only one of the four for which the science target is within the landing area, not nearby.

JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory for the NASA Science Mission Directorate, Washington. For additional information about the mission, see http://mars.jpl.nasa.gov/msl.

 

Todd May Named Marshall Space Flight Center Director

Posted on Updated on

 

Todd May, director of NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA

NASA Administrator Charles Bolden has named Todd May director of the agency’s Marshall Space Flight Center in Huntsville, Alabama. May was appointed Marshall deputy director in August 2015 and has been serving as acting director since the Nov. 13, 2015 retirement of Patrick Scheuermann. 

As director, May will lead one of NASA’s largest field installations, with almost 6,000 civil service and contractor employees, an annual budget of approximately $2.5 billion and a broad spectrum of human spaceflight, science and technology development missions. 

“Todd’s experience and leadership have been invaluable to the agency, especially as we have embarked on designing, building and testing the Space Launch System, a critical part of NASA’s journey to Mars,” said Bolden. “He brings his expert program management and leadership skills and sense of mission to this new role, and I look forward to having him at the helm of Marshall.”

Since its inception in 2011, May led the Space Launch System (SLS) program through a series of milestones, including a successful in-depth critical design review. SLS, now under development, is the most powerful rocket ever built, able to carry astronauts in NASA’s Orion spacecraft on deep space missions, including to an asteroid and ultimately on a journey to Mars. 

May’s NASA career began in 1991 in the Materials and Processes Laboratory at Marshall. He was deputy program manager of the Russian Integration Office in the International Space Station Program at NASA’s Johnson Space Center in Houston in 1994. May managed the successful integration, launch and commissioning of the station’s Quest airlock in 1998. He also joined the team that launched the Gravity Probe B mission to test Einstein’s general theory of relativity.

In 2004, May assumed management of the Discovery and New Frontiers Programs, created to explore the solar system with frequent unmanned spacecraft missions. He moved to NASA Headquarters in Washington in 2007 as a deputy associate administrator in the Science Mission Directorate. Returning to Marshall in June 2008, May was named Marshall’s associate director, technical, a post he held until being named SLS program manager. 

May earned a bachelor’s degree in materials engineering from Auburn University in Auburn, Alabama, in 1990. His many awards include NASA’s Exceptional Achievement Medal, the Presidential Rank Award of Meritorious Executive, NASA’s Outstanding Leadership Medal and the John W. Hager Award for professionalism in materials engineering. He has been named a Distinguished Engineer by Auburn. In 2014, he received Aviation Week’s Program Excellence Award, as well as the Rotary National Award for Space Achievement Foundation’s Stellar Award in recognition of the SLS team’s many accomplishments.

A native of Fairhope, Alabama, May and his wife, Kelly, have four children and live in Huntsville. 

For more information about NASA’s Marshall Space Flight Center, visit: http://www.nasa.gov/marshall

 


When NASA launches its next mission on the journey to Mars – a stationary lander in 2016 – the flight will include two CubeSats. This will be the first time CubeSats have flown in deep space.  If this flyby demonstration is successful, the technology will provide NASA the ability to quickly transmit status information about the main spacecraft after it lands on Mars.

The twin communications-relay CubeSats, being built by NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California, constitute a technology demonstration called Mars Cube One (MarCO).  CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft.

 

The full-scale mock-up of NASA’s MarCO CubeSat held by Farah Alibay, a systems engineer for the technology demonstration, is dwarfed by the one-half-scale model of NASA’s Mars Reconnaissance Orbiter behind her.

Credits: NASA/JPL-Caltech

The basic CubeSat unit is a box roughly 4 inches (10 centimeters) square. Larger CubeSats are multiples of that unit. MarCO’s design is a six-unit CubeSat – about the size of a briefcase — with a stowed size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters).

MarCO will launch in March 2016 from Vandenberg Air Force Base, California on the same United Launch Alliance Atlas V rocket as NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander. Insight is NASA’s first mission to understand the interior structure of the Red Planet. MarCO will fly by Mars while InSight is landing, in September 2016.

“MarCO is an experimental capability that has been added to the InSight mission, but is not needed for mission success,” said Jim Green, director of NASA’s planetary science division at the agency’s headquarters in Washington. “MarCO will fly independently to Mars.”

During InSight’s entry, descent and landing (EDL) operations on Sept. 28, 2016, the lander will transmit information in the UHF radio band to NASA’s Mars Reconnaissance Orbiter (MRO) flying overhead. MRO will forward EDL information to Earth using a radio frequency in the X band, but cannot simultaneously receive information over one band while transmitting on another. Confirmation of a successful landing could be received by the orbiter more than an hour before it’s relayed to Earth.

MarCO’s radio is about softball-size and provides both UHF (receive only) and X-band (receive and transmit) functions capable of immediately relaying information received over UHF.

The two CubeSats will separate from the Atlas V booster after launch and travel along their own trajectories to the Red Planet. After release from the launch vehicle, MarCO’s first challenges are to deploy two radio antennas and two solar panels. The high-gain, X-band antenna is a flat panel engineered to direct radio waves the way a parabolic dish antenna does. MarCO will be navigated to Mars independently of the InSight spacecraft, with its own course adjustments on the way.

Ultimately, if the MarCO demonstration mission succeeds, it could allow for a “bring-your-own” communications relay option for use by future Mars missions in the critical few minutes between Martian atmospheric entry and touchdown.

By verifying CubeSats are a viable technology for interplanetary missions, and feasible on a short development timeline, this technology demonstration could lead to many other applications to explore and study our solar system.

JPL manages MarCO, InSight and MRO for NASA’s Science Mission Directorate in Washington. Technology suppliers for MarCO include: Blue Canyon Technologies of Boulder, Colorado, for the attitude-control system; VACCO Industries of South El Monte, California, for the propulsion system; AstroDev of Ann Arbor, Michigan, for electronics; MMA Design LLC, also of Boulder, for solar arrays; and Tyvak Nano-Satellite Systems Inc., a Terran Orbital Company in San Luis Obispo, California, for the CubeSat dispenser system. 

For information about MarCO, visit: http://www.jpl.nasa.gov/cubesat/missions/marco

For information about InSight, visit: http://www.nasa.gov/insight

Learn more about NASA’s journey to Mars at: http://www.nasa.gov/content/journey-to-mars-overview