NASA/JPL-Caltech

NASA Scientists Find ‘Impossible’ Cloud on Titan — Again

Posted on Updated on

The hazy globe of Titan hangs in front of Saturn and its rings in this natural color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/Space Science Institute

 

The puzzling appearance of an ice cloud seemingly out of thin air has prompted NASA scientists to suggest that a different process than previously thought — possibly similar to one seen over Earth’s poles — could be forming clouds on Saturn’s moon Titan.

Located in Titan’s stratosphere, the cloud is made of a compound of carbon and nitrogen known as dicyanoacetylene (C4N2), an ingredient in the chemical cocktail that colors the giant moon’s hazy, brownish-orange atmosphere. 

Read the rest of this entry »

A Mixed-reality Trip to Mars

Posted on Updated on

Ceremonial_Ribbon_Cutting__Destiny_Mars.jpg
A ceremonial ribbon is cut for the opening of new “Destination: Mars” experience at the Kennedy Space Center visitor complex in Florida. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California. Photo credit: NASA/Charles Babir

 

It’ll be years before the first astronauts leave the launch pad on Earth to journey to Mars. But starting Sept. 19, visitors to the Kennedy Space Center visitor complex in Florida will get a taste of what those astronauts will see when they touch down on the Red Planet.

“Destination: Mars,” a mixed-reality experience designed by NASA’s Jet Propulsion Laboratory, Pasadena, California, and Microsoft HoloLens, held a kick-off event for media at the Visitor Complex on Sept. 18. The experience uses real imagery taken by NASA’s Mars Curiosity rover to let users explore the Martian surface.

Read the rest of this entry »

Light Echoes Gives Clues To Protoplanetary Disk

Posted on Updated on

This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star’s magnetic field lines and is deposited onto the star’s surface. When material hits the star, it lights up brightly. Credits: NASA/JPL-Caltech

 

Imagine you want to measure the size of a room, but it’s completely dark. If you shout, you can tell if the space you’re in is relatively big or small, depending on how long it takes to hear the echo after it bounces off the wall. 

Astronomers use this principle to study objects so distant they can’t be seen as more than points. In particular, researchers are interested in calculating how far young stars are from the inner edge of their surrounding protoplanetary disks. These disks of gas and dust are sites where planets form over the course of millions of years.

  Read the rest of this entry »

NASA Team Probes Peculiar Age-Defying Star

Posted on Updated on

Age_Defying_Star.jpg
An age-defying star designated as IRAS 19312+1950 (arrow) exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA’s Spitzer Space Telescope. A NASA-led team of scientists thinks the star – which is about 10 times as massive as our sun and emits about 20,000 times as much energy – is a newly forming protostar. That was a big surprise because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. Credits: NASA/JPL-Caltech


For years, astronomers have puzzled over a massive star lodged deep in the Milky Way that shows conflicting signs of being extremely old and extremely young.

Researchers initially classified the star as elderly, perhaps a red supergiant. But a new study by a NASA-led team of researchers suggests that the object, labeled IRAS 19312+1950, might be something quite different — a protostar, a star still in the making.

Read the rest of this entry »

NASA Awards Launch Services Contract for Mars 2020 Rover Mission

Posted on Updated on

The design of NASA’s Mars 2020 rover leverages many successful features of the agency’s Curiosity rover, which landed on Mars in 2012, but it adds new science instruments and a sampling system to carry out the new goals for the 2020 mission. Credits: NASA

 

NASA has selected United Launch Services LLC of Centennial, Colorado, to provide launch services for a mission that will address high-priority science goals for the agency’s Journey to Mars. 

Mars 2020 is targeted for launch in July 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rover will conduct geological assessments of its landing site on Mars, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers.

Read the rest of this entry »

Saturn Spacecraft Samples Interstellar Dust

Posted on Updated on

Of the millions of dust grains Cassini has sampled at Saturn, a few dozen appear to have come from beyond our solar system. Scientists believe these special grains have interstellar origins because they moved much faster and in different directions compared to dusty material native to Saturn. Image credit: NASA/JPL-Caltech

 

NASA’s Cassini spacecraft has detected the faint but distinct signature of dust coming from beyond our solar system. The research, led by a team of Cassini scientists primarily from Europe, is published this week in the journal Science.

Cassini has been in orbit around Saturn since 2004, studying the giant planet, its rings and its moons. The spacecraft has also sampled millions of ice-rich dust grains with its cosmic dust analyzer instrument. The vast majority of the sampled grains originate from active jets that spray from the surface of Saturn’s geologically active moon Enceladus.

But among the myriad microscopic grains collected by Cassini, a special few — just 36 grains — stand out from the crowd. Scientists conclude these specks of material came from interstellar space — the space between the stars. 

Alien dust in the solar system is not unanticipated. In the 1990s, the ESA/NASA Ulysses mission made the first in-situ observations of this material, which were later confirmed by NASA’s Galileo spacecraft. The dust was traced back to the local interstellar cloud: a nearly empty bubble of gas and dust that our solar system is traveling through with a distinct direction and speed.

“From that discovery, we always hoped we would be able to detect these interstellar interlopers at Saturn with Cassini. We knew that if we looked in the right direction, we should find them,” said Nicolas Altobelli, Cassini project scientist at ESA (European Space Agency) and lead author of the study. “Indeed, on average, we have captured a few of these dust grains per year, travelling at high speed and on a specific path quite different from that of the usual icy grains we collect around Saturn.”

The tiny dust grains were speeding through the Saturn system at over 45,000 mph (72,000 kilometers per hour), fast enough to avoid being trapped inside the solar system by the gravity of the sun and its planets.

“We’re thrilled Cassini could make this detection, given that our instrument was designed primarily to measure dust from within the Saturn system, as well as all the other demands on the spacecraft,” said Marcia Burton, a Cassini fields and particles scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and a co-author of the paper.

Importantly, unlike Ulysses and Galileo, Cassini was able to analyze the composition of the dust for the first time, showing it to be made of a very specific mixture of minerals, not ice. The grains all had a surprisingly similar chemical make-up, containing major rock-forming elements like magnesium, silicon, iron and calcium in average cosmic proportions. Conversely, more reactive elements like sulfur and carbon were found to be less abundant compared to their average cosmic abundance. 

“Cosmic dust is produced when stars die, but with the vast range of types of stars in the universe, we naturally expected to encounter a huge range of dust types over the long period of our study,” said Frank Postberg of the University of Heidelberg, a co-author of the paper and co-investigator of Cassini’s dust analyzer.

Stardust grains are found in some types of meteorites, which have preserved them since the birth of our solar system. They are generally old, pristine and diverse in their composition. But surprisingly, the grains detected by Cassini aren’t like that. They have apparently been made rather uniform through some repetitive processing in the interstellar medium, the researchers said.

The authors speculate on how this processing of dust might take place: Dust in a star-forming region could be destroyed and recondense multiple times as shock waves from dying stars passed through, resulting in grains like the ones Cassini observed streaming into our solar system.

“The long duration of the Cassini mission has enabled us to use it like a micrometeorite observatory, providing us privileged access to the contribution of dust from outside our solar system that could not have been obtained in any other way,” said Altobelli.

The Cassini-Huygens mission is a cooperative project of NASA, ESA and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington. The Cosmic Dust Analyzer is supported by the German Aerospace Center (DLR); the instrument is managed by the University of Stuttgart, Germany.

For more information about Cassini, visit: http://www.nasa.gov/cassini or http://saturn.jpl.nasa.gov

 

Spitzer Telescope Maps Super Earth’s Climate

Posted on Updated on

The varying brightness of an exoplanet called 55 Cancri e is shown in this plot of infrared data captured by NASA’s Spitzer Space Telescope. Credits: NASA/JPL-Caltech/University of Cambridge

 

Observations from NASA’s Spitzer Space Telescope have led to the first temperature map of a super-Earth planet — a rocky planet nearly two times as big as ours. The map reveals extreme temperature swings from one side of the planet to the other, and hints that a possible reason for this is the presence of lava flows. 

 
 
 
 This animated illustration shows one possible scenario for the rocky exoplanet 55 Cancri e, nearly two times the size of Earth. New Spitzer data show that one side of the planet is much hotter than the other – which could be explained by a possible presence of lava pools.

Credits: NASA/JPL-Caltech

“Our view of this planet keeps evolving,” said Brice Olivier Demory of the University of Cambridge, England, lead author of a new report appearing in the March 30 issue of the journal Nature. “The latest findings tell us the planet has hot nights and significantly hotter days. This indicates the planet inefficiently transports heat around the planet. We propose this could be explained by an atmosphere that would exist only on the day side of the planet, or by lava flows at the planet surface.” 

The toasty super-Earth 55 Cancri e is relatively close to Earth at 40 light-years away. It orbits very close to its star, whipping around it every 18 hours. Because of the planet’s proximity to the star, it is tidally locked by gravity just as our moon is to Earth. That means one side of 55 Cancri, referred to as the day side, is always cooking under the intense heat of its star, while the night side remains in the dark and is much cooler. 

“Spitzer observed the phases of 55 Cancri e, similar to the phases of the moon as seen from the Earth. We were able to observe the first, last quarters, new and full phases of this small exoplanet,” said Demory. “In return, these observations helped us build a map of the planet. This map informs us which regions are hot on the planet.”

Spitzer stared at the planet with its infrared vision for a total of 80 hours, watching it orbit all the way around its star multiple times. These data allowed scientists to map temperature changes across the entire planet. To their surprise, they found a dramatic temperature difference of 2,340 degrees Fahrenheit (1,300 Kelvin) from one side of the planet to the other. The hottest side is nearly 4,400 degrees Fahrenheit (2,700 Kelvin), and the coolest is 2,060 degrees Fahrenheit (1,400 Kelvin). 

The fact Spitzer found the night side to be significantly colder than the day side means heat is not being distributed around the planet very well. The data argues against the notion that a thick atmosphere and winds are moving heat around the planet as previously thought. Instead, the findings suggest a planet devoid of a massive atmosphere, and possibly hint at a lava world where the lava would become hardened on the night side and unable to transport heat.

“The day side could possibly have rivers of lava and big pools of extremely hot magma, but we think the night side would have solidified lava flows like those found in Hawaii,” said Michael Gillon, University of Liège, Belgium. 

The Spitzer data also revealed the hottest spot on the planet has shifted over a bit from where it was expected to be: directly under the blazing star. This shift either indicates some degree of heat recirculation confined to the day side, or points to surface features with extremely high temperatures, such as lava flows. 

Additional observations, including from NASA’s upcoming James Webb Space Telescope, will help to confirm the true nature of 55 Cancrie. 

The new Spitzer observations of 55 Cancri are more detailed thanks to the telescope’s increased sensitivity to exoplanets. Over the past several years, scientists and engineers have figured out new ways to enhance Spitzer’s ability to measure changes in the brightness of exoplanet systems. One method involves precisely characterizing Spitzer’s detectors, specifically measuring “the sweet spot” — a single pixel on the detector — which was determined to be optimal for exoplanet studies. 

“By understanding the characteristics of the instrument — and using novel calibration techniques of a small region of a single pixel — we are attempting to eke out every bit of science possible from a detector that was not designed for this type of high-precision observation,” said Jessica Krick of NASA’s Spitzer Space Science Center, at the California Institute of Technology in Pasadena.

NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

 For more information about Spitzer, visit: http://www.nasa.gov/spitzer

A Still-Growing El Niño Set to Bear Down on US

Posted on Updated on

The latest satellite image of Pacific sea surface heights from Jason-2 (left) differs slightly from one 18 years ago from Topex/Poseidon (right). In Dec. 1997, sea surface height was more intense and peaked in November. This year the area of high sea levels is less intense but considerably broader. (Credit: NASA/JPL-Caltech)

 


The current strong El Niño brewing in the Pacific Ocean shows no signs of waning, as seen in the latest satellite image from the U.S./European Ocean Surface Topography Mission (OSTM)/Jason-2 mission. 

El Niño 2015 has already created weather chaos around the world. Over the next few months, forecasters expect the United States to feel its impacts as well. 

The latest Jason-2 image bears a striking resemblance to one from December 1997, by Jason-2’s predecessor, the NASA/Centre National d’Etudes Spatiales (CNES) Topex/Poseidon mission, during the last large El Niño event. Both reflect the classic pattern of a fully developed El Niño. The images can be viewed at:

http://sealevel.jpl.nasa.gov/elnino2015/index.html

The images show nearly identical, unusually high sea surface heights along the equator in the central and eastern Pacific: the signature of a big and powerful El Niño. Higher-than-normal sea surface heights are an indication that a thick layer of warm water is present.

El Niños are triggered when the steady, westward-blowing trade winds in the Pacific weaken or even reverse direction, triggering a dramatic warming of the upper ocean in the central and eastern tropical Pacific. Clouds and storms follow the warm water, pumping heat and moisture high into the overlying atmosphere. These changes alter jet stream paths and affect storm tracks all over the world.

This year’s El Niño has caused the warm water layer that is normally piled up around Australia and Indonesia to thin dramatically, while in the eastern tropical Pacific, the normally cool surface waters are blanketed with a thick layer of warm water. This massive redistribution of heat causes ocean temperatures to rise from the central Pacific to the Americas. It has sapped Southeast Asia’s rain in the process, reducing rainfall over Indonesia and contributing to the growth of massive wildfires that have blanketed the region in choking smoke. 

El Niño is also implicated in Indian heat waves caused by delayed monsoon rains, as well as Pacific island sea level drops, widespread coral bleaching that is damaging coral reefs, droughts in South Africa, flooding in South America and a record-breaking hurricane season in the eastern tropical Pacific. Around the world, production of rice, wheat, coffee and other crops has been hit hard by droughts and floods, leading to higher prices. 

In the United States, many of El Niño’s biggest impacts are expected in early 2016. Forecasters at the National Oceanic and Atmospheric Administration favor an El Niño-induced shift in weather patterns to begin in the near future, ushering in several months of relatively cool and wet conditions across the southern United States, and relatively warm and dry conditions over the northern United States. The latest El Niño forecast from NOAA’s Climate Prediction Center is at: http://www.cpc.ncep.noaa.gov/

While scientists still do not know precisely how the current El Niño will affect the United States, the last large El Niño in 1997-98 was a wild ride for most of the nation. The “Great Ice Storm” of January 1998 crippled northern New England and southeastern Canada, but overall, the northern tier of the United States experienced long periods of mild weather and meager snowfall. Meanwhile, across the southern United States, a steady convoy of storms slammed most of California, moved east into the Southwest, drenched Texas and — pumped up by the warm waters of the Gulf of Mexico — wreaked havoc along the Gulf Coast, particularly in Florida. 

“In 2014, the current El Niño teased us — wavering off and on,” said Josh Willis, project scientist for the Jason missions at JPL. “But in early 2015, atmospheric conditions changed, and El Niño steadily expanded in the central and eastern Pacific. Although the sea surface height signal in 1997 was more intense and peaked in November of that year, in 2015, the area of high sea levels is larger. This could mean we have not yet seen the peak of this El Niño.”

During normal, non-El Niño conditions, the amount of warm water in the western equatorial Pacific is so large that sea levels are about 20 inches (50 centimeters) higher in the western Pacific than in the eastern Pacific. “You can see it in the latest Jason-2 image of the Pacific,” said Willis. “The 8-inch [20-centimeter] drop in the west, coupled with the 10-inch [25-centimeter] rise in the east, has completely wiped out the tilt in sea level we usually have along the equator.”

The new Jason-2 image shows that the amount of extra-warm surface water from the current El Niño (depicted in red and white shades) has continuously increased, especially in the eastern Pacific within 10 degrees latitude north and south of the equator. In the western Pacific, the area of low sea level (blue and purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage. In the white areas, the sea surface is between 6 and 10 inches (15 to 25 centimeters) above normal, while in the red areas, it is about 4 inches (10 centimeters) above normal. The green areas indicate normal conditions. The height of the ocean water relates, in part, to its temperature, and is an indicator of the amount of heat stored in the ocean below. 

Within this area, surface temperatures are greater than 86 degrees Fahrenheit (30 degrees Celsius) in the central equatorial Pacific and near 70 degrees Fahrenheit (21 degrees Celsius) off the coast of the Americas. This El Niño signal encompasses a surface area of 6 million square miles (16 million square kilometers) — more than twice as big as the continental United States. 

While no one can predict the exact timing or intensity of U.S. El Niño impacts, for drought-stricken California and the U.S. West, it’s expected to bring some relief. 

“The water story for much of the American West over most of the past decade has been dominated by punishing drought,” said JPL climatologist Bill Patzert. “Reservoir levels have fallen to record or near-record lows, while groundwater tables have dropped dangerously in many areas. Now we’re preparing to see the flip side of nature’s water cycle — the arrival of steady, heavy rains and snowfall.” 

In 1982-83 and 1997-98, large El Niños delivered about twice the average amount of rainfall to Southern California, along with mudslides, floods, high winds, lightning strikes and high surf. But Patzert cautioned that El Niño events are not drought busters. “Over the long haul, big El Niños are infrequent and supply only seven percent of California’s water,” he said.

“Looking ahead to summer, we might not be celebrating the demise of this El Niño,” cautioned Patzert. “It could be followed by a La Niña, which could bring roughly opposite effects to the world’s weather.” 

La Niñas are essentially the opposite of El Niño conditions. During a La Niña episode, trade winds are stronger than normal, and the cold water that normally exists along the coast of South America extends to the central equatorial Pacific. La Niña episodes change global weather patterns and are associated with less moisture in the air over cooler ocean waters. This results in less rain along the coasts of North and South America and along the central and eastern equatorial Pacific, and more rain in the far Western Pacific.

El Niño events are part of the long-term, evolving state of global climate, for which measurements of sea surface height are a key indicator. 

For an animation of the evolution of the 2015 and 1997 El Niños, visit: https://sealevel.jpl.nasa.gov/elnino2015/2015-animated.gif

For more information on how NASA studies El Niño, visit: http://climatesciences.jpl.nasa.gov/enso

To learn more about NASA’s satellite altimetry programs, visit: http://sealevel.jpl.nasa.gov

For more information about NASA’s Earth science activities, visit: http://www.nasa.gov/earth

 

Halloween Skies to Include Dead Comet Flyby

Posted on Updated on

 

 

The large space rock that will zip past Earth this Halloween is most likely a dead comet that, fittingly, bears an eerie resemblance to a skull.

Scientists observing asteroid 2015 TB145 with NASA’s Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, have determined that the celestial object is more than likely a dead comet that has shed its volatiles after numerous passes around the sun.

The belated comet has also been observed by optical and radar observatories around the world, providing even more data, including our first close-up views of its surface. Asteroid 2015 TB145 will safely fly by our planet at just under 1.3 lunar distances, or about 302,000 miles (486,000 kilometers), on Halloween (Oct. 31) at 1 p.m. EDT (10 a.m. PDT, 17:00 UTC).

The first radar images of the dead comet were generated by the National Science Foundation’s 305-meter (1,000-foot) Arecibo Observatory in Puerto Rico. The radar images from Arecibo indicate the object is spherical in shape and approximately 2,000 feet (600 meters) in diameter and completes a rotation about once every five hours. 

“The IRTF data may indicate that the object might be a dead comet, but in the Arecibo images it appears to have donned a skull costume for its Halloween flyby,” said Kelly Fast, IRTF program scientist at NASA Headquarters and acting program manager for NASA’s NEO Observations Program.

These first radar images from the National Science Foundation’s 1,000-foot (305-meter) Arecibo Observatory in Puerto Rico, indicate the near-Earth object is spherical in shape and approximately 2,000 feet (600 meters) in diameter. The radar images were taken on Oct. 30, 2015, and the image resolution is 25 feet (7.5 meters) per pixel.Image credit: NAIC-Arecibo/NSF

Managed by the University of Hawaii for NASA, the IRTF’s 3-meter (10 foot) telescope collected infrared data on the object. The data may finally put to rest the debate over whether 2015 TB145, with its unusual orbit, is an asteroid or is of cometary origin.

“We found that the object reflects about six percent of the light it receives from the sun,” said Vishnu Reddy, a research scientist at the Planetary Science Institute, Tucson, Arizona. “That is similar to fresh asphalt, and while here on Earth we think that is pretty dark, it is brighter than a typical comet which reflects only 3 to 5 percent of the light. That suggests it could be cometary in origin — but as there is no coma evident, the conclusion is it is a dead comet.”

Radar images generated by the Arecibo team are available at:

https://www.facebook.com/notes/national-astronomy-and-ionosphere-center-arecibo-observatory/near-earth-asteroid-2015-tb145-passes-by-without-a-fright/1082765941733673

Asteroid 2015 TB145 was discovered on Oct. 10, 2015, by the University of Hawaii’s Pan-STARRS-1 (Panoramic Survey Telescope and Rapid Response System) on Haleakala, Maui, part of the NASA-funded Near-Earth Object Observations (NEOO) Program. The next time the asteroid will be in Earth’s neighborhood will be in September 2018, when it will make a distant pass at about 24 million miles (38 million kilometers), or about a quarter the distance between Earth and the sun.

Radar is a powerful technique for studying an asteroid’s size, shape, rotation, surface features and surface roughness, and for improving the calculation of asteroid orbits. Radar measurements of asteroid distances and velocities often enable computation of asteroid orbits much further into the future than would be possible otherwise.

NASA places a high priority on tracking asteroids and protecting our home planet from them. In fact, the U.S. has the most robust and productive survey and detection program for discovering near-Earth objects (NEOs). To date, U.S.-funded assets have discovered over 98 percent of the known NEOs.

In addition to the resources NASA puts into understanding asteroids, it also partners with other U.S. government agencies, university-based astronomers, and space science institutes across the country, often with grants, interagency transfers and other contracts from NASA, and also with international space agencies and institutions that are working to track and better understand these objects. In addition, NASA values the work of numerous highly skilled amateur astronomers, whose accurate observational data helps improve asteroid orbits after they are found.

NASA’s Jet Propulsion Laboratory, Pasadena, California, hosts the Center for Near-Earth Object Studies for NASA’s Near-Earth Object Observations Program within the agency’s Science Mission Directorate.

More information about asteroids and near-Earth objects is at these websites:

http://neo.jpl.nasa.gov

http://www.jpl.nasa.gov/asteroidwatch

 

 

NASA’s Curiosity Rover Inspects Unusual Bedrock (High-Silica ‘Lamoose’ Rock)

Posted on

 

 

A rock fragment dubbed “Lamoose” is shown in this picture taken by the Mars Hand Lens Imager (MAHLI) on NASA’s Curiosity rover. Like other nearby rocks in a portion of the “Marias Pass” area of Mt. Sharp, Mars, it has unusually high concentrations of silica. ( Image credit: NASA/JPL-Caltech/MSSS)

Fast Facts:

  • Rover examines geological contact zone near ‘Marias Pass’
  • Silica-rich rocks identified nearby with laser-firing instrument
  • Test of rover’s drill prepares for next use on Mars rock

Approaching the third anniversary of its landing on Mars, NASA’s Curiosity Mars rover has found a target unlike anything it has studied before — bedrock with surprisingly high levels of silica. Silica is a rock-forming compound containing silicon and oxygen, commonly found on Earth as quartz.

This area lies just downhill from a geological contact zone the rover has been studying near “Marias Pass” on lower Mount Sharp.

In fact, the Curiosity team decided to back up the rover 46 meters (151 feet) from the geological contact zone to investigate the high-silica target dubbed “Elk.” The decision was made after they analyzed data from two instruments, the laser-firing Chemistry & Camera (ChemCam) and Dynamic Albedo of Neutrons (DAN), which showed higher amounts of silicon and hydrogen, respectively. High levels of silica in the rock could indicate ideal conditions for preserving ancient organic material, if present, so the science team wants to take a closer look.

“One never knows what to expect on Mars, but the Elk target was interesting enough to go back and investigate,” said Roger Wiens, the principal investigator of the ChemCam instrument from the Los Alamos National Laboratory in New Mexico. ChemCam is coming up on its 1,000th target, having already fired its laser more than 260,000 times since Curiosity landed on Mars Aug. 6, 2012, Universal Time (evening of Aug. 5, Pacific Time).

In other news, an engineering test on the rover’s sample-collecting drill on July 18 is aiding analysis of intermittent short circuits in the drill’s percussion mechanism, in preparation for using the drill in the area where the rover has been working for the past two months. The latest test did not result in any short circuits, so the team plans to continue with more tests, performed on the science targets themselves.

Before Curiosity began further investigating the high-silica area, it was busy scrutinizing the geological contact zone near Marias Pass, where a pale mudstone meets darker sandstone.

 

A rock outcrop dubbed “Missoula,” near Marias Pass on Mars, is seen in this image mosaic taken by the Mars Hand Lens Imager on NASA’s Curiosity rover. Pale mudstone (bottom of outcrop) meets coarser sandstone (top) in this geological contact zone, which has piqued the interest of Mars scientists. (Image credit: NASA/JPL-Caltech/MSSS)

 

“We found an outcrop named Missoula where the two rock types came together, but it was quite small and close to the ground. We used the robotic arm to capture a dog’s-eye view with the MAHLI camera, getting our nose right in there,” said Ashwin Vasavada, the mission’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. MAHLI is short for Mars Hand Lens Imager.

The rover had reached this area after a steep climbed a 20-foot (6-meter) hill. Near the top of the climb, the ChemCam instrument fired its laser at the target Elk, and took a spectral reading of its composition.

“ChemCam acts like eyes and ears of the rover for nearby objects,” said Wiens.

The rover had moved on before analyzing the Elk data, so the rover performed a U-turn to get more data. Upon its return, the rover was able to study a similar target, “Lamoose,” up close with the MAHLI camera and the arm-mounted Alpha Particle X-ray Spectrometer (APXS).

Curiosity has been working on Mars since early August 2012. It reached the base of Mount Sharp last year after fruitfully investigating outcrops closer to its landing site and then trekking to the mountain. The main mission now is to look at successively higher layers of Mount Sharp.

The U.S. Department of Energy’s Los Alamos National Laboratory developed ChemCam in partnership with scientists and engineers funded by the French national space agency. Russia’s space agency provided Curiosity’s DAN instrument. JPL, a division of the California Institute of Technology in Pasadena, built the rover and manages the project for NASA’s Science Mission Directorate in Washington.

For more information about Curiosity, visit: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl

You can also follow the mission on Facebook and Twitter at: http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity