News

New Organic Compounds Found in Enceladus Ice Grains

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
gretchen.p.mccartney@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

PIA09761_hires
In this image captured by NASA’s Cassini spacecraft in 2007, the plumes of Enceladus are clearly visible. The moon is nearly in front of the Sun from Cassini’s viewpoint.Credit: NASA/JPL/Space Science Institute

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn’s moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA’s Cassini mission.

Powerful hydrothermal vents eject material from Enceladus’ core, which mixes with water from the moon’s massive subsurface ocean before it is released into space as water vapor and ice grains. The newly discovered molecules, condensed onto the ice grains, were determined to be nitrogen- and oxygen-bearing compounds.

Read the rest of this entry »

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
gretchen.p.mccartney@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

PIA09761_hires
In this image captured by NASA’s Cassini spacecraft in 2007, the plumes of Enceladus are clearly visible. The moon is nearly in front of the Sun from Cassini’s viewpoint.Credit: NASA/JPL/Space Science Institute

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn’s moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA’s Cassini mission.

Powerful hydrothermal vents eject material from Enceladus’ core, which mixes with water from the moon’s massive subsurface ocean before it is released into space as water vapor and ice grains. The newly discovered molecules, condensed onto the ice grains, were determined to be nitrogen- and oxygen-bearing compounds.

Read the rest of this entry »

Mar’s Solar Conjuction — What Is It & What It Means

Posted on Updated on

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
andrew.c.good@jpl.nasa.gov

Alana Johnson
NASA Headquarters, Washington
alana.r.johnson@nasa.gov

 

 

This animation illustrates Mars solar conjunction, a period when Mars is on the opposite side of the Sun from Earth. During this time, the Sun can interrupt radio transmissions to spacecraft on and around the Red Planet. Credit: NASA/JPL-Caltech

 

The daily chatter between antennas here on Earth and those on NASA spacecraft at Mars is about to get much quieter for a few weeks. 

That’s because Mars and Earth will be on opposite sides of the Sun, a period known as Mars solar conjunction. The Sun expels hot, ionized gas from its corona, which extends far into space. During solar conjunction, this gas can interfere with radio signals when engineers try to communicate with spacecraft at Mars, corrupting commands and resulting in unexpected behavior from our deep space explorers. 

 

Read the rest of this entry »

How NASA’s Spitzer Has Stayed Alive for So Long

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
calla.e.cofield@jpl.nasa.gov 

 

Members of the Spitzer engineering team pose in the mission support area. Front row (left to right): Natalie Martinez-Vlashoff, Jose Macias, Lisa Storrie-Lombardi, Amanda Kniepkamp, Bolinda Kahr, Mariah Woody, Socorro Rangel, May Tran. Middle: Pedro Diaz-Rubin, Joseph Hunt, John Ibanez, Laura Su, Nari Hwangpo. Back row: Michael Diaz, Adam Harbison, Richard Springer, Joe Stuesser, Ken Stowers, Dave Bliss. Not pictured: Bob Lineaweaver, Jason Hitz and Walt Hoffman.

 

After nearly 16 years of exploring the cosmos in infrared light, NASA’s Spitzer Space Telescope will be switched off permanently on Jan. 30, 2020. By then, the spacecraft will have operated for more than 11 years beyond its prime mission, thanks to the Spitzer engineering team’s ability to address unique challenges as the telescope slips farther and farther from Earth. 

Managed and operated by NASA’s Jet Propulsion Laboratory in Pasadena, California, Spitzer is a small but transformational observatory. It captures infrared light, which is often emitted by “warm” objects that aren’t quite hot enough to radiate visible light. Spitzer has lifted the veil on hidden objects in nearly every corner of the universe, from a new ring around Saturn to observations of some of the most distant galaxies known. It has spied stars in every stage of lifemapped our home galaxy, captured gorgeous images of nebulas and probed newly discovered planets orbiting distant stars. 

 

Read the rest of this entry »

Black Hole Image Makes History

Posted on Updated on

Elizabeth Landau

NASA Headquarters, Washington

 

 

Scientists have obtained the first image of a black hole, using Event Horizon Telescope observations of the center of the galaxy M87. The image shows a bright ring formed as light bends in the intense gravity around a black hole that is 6.5 billion times more massive than the Sun. Credit: Event Horizon Telescope Collaboration

 

 

A black hole and its shadow have been captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

 

A black hole is an extremely dense object from which no light can escape. Anything that comes within a black hole’s “event horizon,” its point of no return, will be consumed, never to re-emerge, because of the black hole’s unimaginably strong gravity. By its very nature, a black hole cannot be seen, but the hot disk of material that encircles it shines bright. Against a bright backdrop, such as this disk, a black hole appears to cast a shadow.


 

Read the rest of this entry »

Black Hole Image Of Galaxy M87 Makes History

Posted on Updated on

 

Scientists have obtained the first image of a black hole, using Event Horizon Telescope observations of the center of the galaxy M87. The image shows a bright ring formed as light bends in the intense gravity around a black hole that is 6.5 billion times more massive than the Sun. Credit: Event Horizon Telescope Collaboration

 

A black hole and its shadow have been captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

A black hole is an extremely dense object from which no light can escape. Anything that comes within a black hole’s “event horizon,” its point of no return, will be consumed, never to re-emerge, because of the black hole’s unimaginably strong gravity. By its very nature, a black hole cannot be seen, but the hot disk of material that encircles it shines bright. Against a bright backdrop, such as this disk, a black hole appears to cast a shadow. 

The stunning new image shows the shadow of the supermassive black hole in the center of Messier 87 (M87), an elliptical galaxy some 55 million light-years from Earth. This black hole is 6.5 billion times the mass of the Sun. Catching its shadow involved eight ground-based radio telescopes around the globe, operating together as if they were one telescope the size of our entire planet. 

 

Read the rest of this entry »

ESA: Lensed Supernova Gives Insight to Expansion of Universe

Posted on Updated on

Ariel Goobar & Rahman Amanullah
Oskar Klein Centre at Stockholm University, Stockholm, Sweden

 

This composite image shows the gravitationally lensed type Ia supernova iPTF16geu, as seen with different telescopes. The background image shows a wide-field view of the night sky as seen with the Palomar Observatory located on Palomar Mountain, California. The leftmost image shows observations made with the Sloan Digital Sky Survey (SDSS). The central image was taken by the NASA/ESA Hubble Space Telescope and shows the lensing galaxy SDSS J210415.89-062024.7. The rightmost image was also taken with Hubble and depicts the four lensed images of the supernova explosion, surrounding the lensing galaxy. Credit: ESA/Hubble, NASA, Sloan Digital Sky Survey, Palomar Observatory/California Institute of Technology

 

An international team, led by astronomers from the Stockholm University, Sweden, has discovered a distant type Ia supernova, called iPTF16geu [1] — it took the light 4.3 billion years to travel to Earth [2]. The light from this particular supernova was bent and magnified by the effect of gravitational lensing so that it was split into four separate images on the sky [3]. The four images lie on a circle with a radius of only about 3000 light-years around the lensing foreground galaxy, making it one of the smallest extragalactic gravitational lenses discovered so far. Its appearance resembles the famous Refsdal supernova, which astronomers detected in 2015 (heic1525). Refsdal, however, was a core-collapse supernova.

Type Ia supernovae always have the same intrinsic brightness, so by measuring how bright they appear astronomers can determine how far away they are. They are therefore known as standard candles. These supernovae have been used for decades to measure distances across the Universe, and were also used to discover its accelerated expansion and infer the existence of dark energy. Now the supernova iPTF16geu allows scientists to explore new territory, testing the theories of the warping of spacetime on smaller extragalactic scales than ever before.

 

Read the rest of this entry »

Asteroid to Fly Safely Past Earth on April 19

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

 

This computer-generated image depicts the flyby of asteroid 2014 JO25. The asteroid will safely fly past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance between Earth and the moon. Image credit: NASA/JPL-Caltech

 

A relatively large near-Earth asteroid discovered nearly three years ago will fly safely past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance from Earth to the moon. Although there is no possibility for the asteroid to collide with our planet, this will be a very close approach for an asteroid of this size. 

The asteroid, known as 2014 JO25, was discovered in May 2014 by astronomers at the Catalina Sky Survey near Tucson, Arizona — a project of NASA’s NEO Observations Program in collaboration with the University of Arizona. (An NEO is a near-Earth object). Contemporary measurements by NASA’s NEOWISE mission indicate that the asteroid is roughly 2,000 feet (650 meters) in size, and that its surface is about twice as reflective as that of the moon. At this time very little else is known about the object’s physical properties, even though its trajectory is well known.

 

Read the rest of this entry »

Solar Storms Can Drain Electrical Charge Above Earth

Posted on Updated on

Written by Carol Rasmussen
NASA’s Earth Science News Team

A solar eruption on Sept. 26, 2014, seen by NASA’s Solar Dynamics Observatory. If erupted solar material reaches Earth, it can deplete the electrons in the upper atmosphere in some locations while adding electrons in others, disrupting communications either way. Credit: NASA

 

New research on solar storms finds that they not only can cause regions of excessive electrical charge in the upper atmosphere above Earth’s poles, they also can do the exact opposite: cause regions that are nearly depleted of electrically charged particles. The finding adds to our knowledge of how solar storms affect Earth and could possibly lead to improved radio communication and navigation systems for the Arctic. 

A team of researchers from Denmark, the United States and Canada made the discovery while studying a solar storm that reached Earth on Feb. 19, 2014. The storm was observed to affect the ionosphere in all of Earth’s northern latitudes. Its effects on Greenland were documented by a network of global navigation satellite system, or GNSS, stations as well as geomagnetic observatories and other resources. Attila Komjathy of NASA’s Jet Propulsion Laboratory, Pasadena, California, developed software to process the GNSS data and helped with the data processing. The results were published in the journal Radio Science.

Read the rest of this entry »

Stars Born in Winds from Supermassive Black Holes

Posted on Updated on

 

ESO’s VLT spots brand-new type of star formation

Artist’s impression of a galaxy forming stars within powerful outflows of material blasted out from supermassive black holes at its core. Results from ESO’s Very Large Telescope are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. Credit: ESO/M. Kornmesser

Observations using ESO’s Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. The results are published in the journal Nature.


A UK-led group of European astronomers used the MUSE and X-shooter instruments on the Very Large Telescope(VLT) at ESO’s Paranal Observatory in Chile to study an ongoing collision between two galaxies, known collectively as IRAS F23128-5919, that lie around 600 million light-years from Earth. The group observed the colossal winds of material — or outflows — that originate near the supermassive black hole at the heart of the pair’s southern galaxy, and have found the first clear evidence that stars are being born within them [1].

Such galactic outflows are driven by the huge energy output from the active and turbulent centres of galaxiesSupermassive black holes lurk in the cores of most galaxies, and when they gobble up matter they also heat the surrounding gas and expel it from the host galaxy in powerful, dense winds [2].

Read the rest of this entry »

NASA’s Juno Spacecraft Set for Fifth Jupiter Flyby

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington

 

This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian “galaxy” of swirling storms. Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

 

NASA’s Juno spacecraft will make its fifth flyby over Jupiter’s mysterious cloud tops on Monday, March 27, at 1:52 a.m. PDT (4:52 a.m. EDT, 8:52 UTC).

At the time of closest approach (called perijove), Juno will be about 2,700 miles (4,400 kilometers) above the planet’s cloud tops, traveling at a speed of about 129,000 miles per hour (57.8 kilometers per second) relative to the gas-giant planet. All of Juno’s eight science instruments will be on and collecting data during the flyby.


Read the rest of this entry »