Planetary Formation

NASA’s Cassini Data Show Saturn’s Rings Relatively New

Posted on Updated on

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.

JoAnna Wendel
NASA Headquarters, Washington DC


An artist’s concept of the Cassini orbiter crossing Saturn’s ring plane. New measurements of the rings’ mass give scientists the best answer yet to the question of their age. Credit: NASA/JPL-Caltech

 

The rings of Saturn may be iconic, but there was a time when the majestic gas giant existed without its distinctive halo. In fact, the rings may have formed much later than the planet itself, according to a new analysis of gravity science data from NASA’s Cassini spacecraft. 

The findings indicate that Saturn’s rings formed between 10 million and 100 million years ago. From our planet’s perspective, that means Saturn’s rings may have formed during the age of dinosaurs. 

The conclusions of the research – gleaned from measurements collected during the final, ultra-close orbits Cassini performed in 2017 as the spacecraft neared the end of its mission – are the best answer yet to a longstanding question in solar system science. The findings were published online Jan. 17 in Science.

 

Read the rest of this entry »

NASA Satellites Spot Young Star in Growth Spurt

Posted on Updated on

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.

 

This illustration shows a young star undergoing a type of growth spurt. Left panel: Material from the dusty and gas-rich disk (orange) plus hot gas (blue) mildly flows onto the star, creating a hot spot. Middle panel: The outburst begins – the inner disk is heated, more material flows to the star, and the disk creeps inward. Right panel: The outburst is in full throttle, with the inner disk merging into the star and gas flowing outward (green). Credit: Caltech/T. Pyle (IPAC)

 

An adolescent star in the midst of a dramatic growth phase has been observed with the help of two NASA space telescopes. The youngster belongs to a class of stars that gain mass when matter swirling around the star falls onto its surface. The in-falling matter causes the star to appear about 100 times brighter. Astronomers have found only 25 stars in this class, and only about half of those have been observed during an outburst. 


Read the rest of this entry »

NASA’s Juno Spacecraft Set for Fifth Jupiter Flyby

Posted on Updated on

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington

 

This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian “galaxy” of swirling storms. Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

 

NASA’s Juno spacecraft will make its fifth flyby over Jupiter’s mysterious cloud tops on Monday, March 27, at 1:52 a.m. PDT (4:52 a.m. EDT, 8:52 UTC).

At the time of closest approach (called perijove), Juno will be about 2,700 miles (4,400 kilometers) above the planet’s cloud tops, traveling at a speed of about 129,000 miles per hour (57.8 kilometers per second) relative to the gas-giant planet. All of Juno’s eight science instruments will be on and collecting data during the flyby.


Read the rest of this entry »

The Many Faces of Rosetta’s Comet 67P

Posted on Updated on

Markus Bauer
European Space Agency, Noordwijk, Netherlands

M. Ramy El-Maarry
University of Colorado

Matt Taylor

ESA Rosetta project scientist 

 

Moving_Boulder_on_Comet_67P.jpg
This image showcases changes identified in high-resolution images of Comet 67P/Churyumov-GerasimenkoA 100 foot-wide (30 meter), 28-million-pound (12.8-million-kilogram) boulder. Several sites of cliff collapse on comet 67P/Churyumov-Gerasimenko A 100 foot-wide (30 meter), 28-million-pound (12.8-million-kilogram) boulder, was found to have moved 460 feet (140 meters) on comet 67P/Churyumov-Gerasimenko in the lead up to perihelion in August 2015, when the comet’s activity was at its highest. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

 

NOTE: Make sure you check 0ut the accompanying Space Photo Exploration page for Comet 67P/Churyumov-Gerasimenko


Images returned from the European Space Agency’s Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place – full of growing fractures, collapsing cliffs and massive rolling boulders. Moving material buried some features on the comet’s surface while exhuming others. A study on 67P’s changing surface was released Tuesday, March 21, in the journal Science.

“As comets approach the sun, they go into overdrive and exhibit spectacular changes on their surface,” said Ramy El-Maarry, study leader and a member of the U.S. Rosetta science team from the University of Colorado, Boulder. “This is something we were not able to really appreciate before the Rosetta mission, which gave us the chance to look at a comet in ultra-high resolution for more than two years.”

 

Read the rest of this entry »

New Planet Imager Delivers First Science

Posted on Updated on

Written by Whitney Clavin
Jet Propulsion Laboratory, Pasadena, California
January 30, 2017  

The vortex mask shown at left is made out of synthetic diamond. Viewed with an scanning electron microscope, right, the “vortex” microstructure of the mask is revealed. Image credit: University of Liège/Uppsala University

A new device on the W.M. Keck Observatory in Hawaii has delivered its first images, showing a ring of planet-forming dust around a star, and separately, a cool, star-like body, called a brown dwarf, lying near its companion star.

The device, called a vortex coronagraph, was recently installed inside NIRC2 (Near Infrared Camera 2), the workhorse infrared imaging camera at Keck. It has the potential to image planetary systems and brown dwarfs closer to their host stars than any other instrument in the world.

Read the rest of this entry »

NASA Scientists Find ‘Impossible’ Cloud on Titan — Again

Posted on Updated on

The hazy globe of Titan hangs in front of Saturn and its rings in this natural color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/Space Science Institute

 

The puzzling appearance of an ice cloud seemingly out of thin air has prompted NASA scientists to suggest that a different process than previously thought — possibly similar to one seen over Earth’s poles — could be forming clouds on Saturn’s moon Titan.

Located in Titan’s stratosphere, the cloud is made of a compound of carbon and nitrogen known as dicyanoacetylene (C4N2), an ingredient in the chemical cocktail that colors the giant moon’s hazy, brownish-orange atmosphere. 

Read the rest of this entry »

NASA Prepares to Launch First U.S. Asteroid Sample Return Mission

Posted on Updated on

OSIRIS-REx will travel to near-Earth asteroid Benn on a sample return mission Credits: NASA

  

NASA is preparing to launch its first mission to return a sample of an asteroid to Earth. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.

The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft will travel to the near-Earth asteroid Bennu and bring a sample back to Earth for intensive study. Launch is scheduled for 7:05 p.m. EDT Thursday, Sept. 8 from Cape Canaveral Air Force Station in Florida. 

“This mission exemplifies our nation’s quest to boldly go and study our solar system and beyond to better understand the universe and our place in it,” said Geoff Yoder, acting associate administrator for the agency’s Science Mission Directorate in Washington. “NASA science is the greatest engine of scientific discovery on the planet and OSIRIS-REx embodies our directorate’s goal to innovate, explore, discover, and inspire.” 

The 4,650-pound (2,110-kilogram) fully-fueled spacecraft will launch aboard an Atlas V 411 rocket during a 34-day launch period that begins Sept. 8, and reach its asteroid target in 2018. After a careful survey of Bennu to characterize the asteroid and locate the most promising sample sites, OSIRIS-REx will collect between 2 and 70 ounces (about 60 to 2,000 grams) of surface material with its robotic arm and return the sample to Earth via a detachable capsule in 2023.

“The launch of OSIRIS-REx is the beginning a seven-year journey to return pristine samples from asteroid Bennu,” said OSIRIS-REx Principal Investigator Dante Lauretta of the University of Arizona, Tucson. “The team has built an amazing spacecraft, and we are well-equipped to investigate Bennu and return with our scientific treasure.” 

OSIRIS-REx has five instruments to explore Bennu:

  • OSIRIS-REx Camera Suite (OCAMS) – A system consisting of three cameras provided by the University of Arizona, Tucson, will observe Bennu and provide global imaging, sample site imaging, and will witness the sampling event.
  • OSIRIS-REx Laser Altimeter (OLA) – A scanning LIDAR (Light Detection and Ranging) contributed by the Canadian Space Agency will be used to measure the distance between the spacecraft and Bennu’s surface, and will map the shape of the asteroid.
  • OSIRIS-REx Thermal Emission Spectrometer (OTES) – An instrument provided by Arizona State University in Tempe that will investigate mineral abundances and provide temperature information with observations in the thermal infrared spectrum.
  • OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) – An instrument provided by NASA’s Goddard Space Flight Center in Greenbelt, Maryland and designed to measure visible and infrared light from Bennu to identify mineral and organic material.
  • Regolith X-ray Imaging Spectrometer (REXIS) – A student experiment provided by the Massachusetts Institute of Technology (MIT) and Harvard University in Cambridge, which will observe the X-ray spectrum to identify chemical elements on Bennu’s surface and their abundances.

Additionally, the spacecraft has two systems that will enable the sample collection and return:

  • Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – An articulated robotic arm with a sampler head, provided by Lockheed Martin Space Systems in Denver, to collect a sample of Bennu’s surface.
  • OSIRIS-REx Sample Return Capsule (SRC) – A capsule with a heat shield and parachutes in which the spacecraft will return the asteroid sample to Earth, provided by Lockheed Martin. 

“Our upcoming launch is the culmination of a tremendous amount of effort from an extremely dedicated team of scientists, engineers, technicians, finance and support personnel,” said OSIRIS-REx Project Manager Mike Donnelly at Goddard. “I’m incredibly proud of this team and look forward to launching the mission’s journey to Bennu and back.”

Goddard provides overall mission management, systems engineering, and safety and mission assurance for OSIRIS-REx. Lockheed Martin Space Systems built the spacecraft. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

For images, video, and more information, visit: http://www.nasa.gov/osiris-rex and http://www.asteroidmission.org