Solar Studies
NASA Selects Missions to Study Our Sun, Its Effects on Space Weather
Grey Hautaluoma / Karen Fox
NASA Headquarters, Washington
grey.hautaluoma-1@nasa.gov / karen.c.fox@nasa.gov

NASA has selected two new missions to advance our understanding of the Sun and its dynamic effects on space. One of the selected missions will study how the Sun drives particles and energy into the solar system and a second will study Earth’s response.
The Sun generates a vast outpouring of solar particles known as the solar wind, which can create a dynamic system of radiation in space called space weather. Near Earth, where such particles interact with our planet’s magnetic field, the space weather system can lead to profound impacts on human interests, such as astronauts’ safety, radio communications, GPS signals, and utility grids on the ground. The more we understand what drives space weather and its interaction with the Earth and lunar systems, the more we can mitigate its effects – including safeguarding astronauts and technology crucial to NASA’s Artemis program to the Moon.
(ESO) ALMA Starts Observing the Sun
Roman Brajsa
Hvar Observatory, University of Zagreb
Croatia
Ivica Skokic
Astronomical Institute of the Czech Academy of Sciences
Ondrejov, Czech Republic

Astronomers have harnessed the Atacama Large Millimeter/submillimeter Array (ALMA)‘s capabilities to image the millimetre-wavelength light emitted by the Sun’s chromosphere — the region that lies just above the photosphere, which forms the visible surface of the Sun. The solar campaign team, an international group of astronomers with members from Europe, North America and East Asia [1], produced the images as a demonstration of ALMA’s ability to study solar activity at longer wavelengths of light than are typically available to solar observatories on Earth.
Astronomers have studied the Sun and probed its dynamic surface and energetic atmosphere in many ways through the centuries. But, to achieve a fuller understanding, astronomers need to study it across the entire electromagnetic spectrum, including the millimetre and submillimetre portion that ALMA can observe.