Supernova

ESA: Lensed Supernova Gives Insight to Expansion of Universe

Posted on Updated on

Ariel Goobar & Rahman Amanullah
Oskar Klein Centre at Stockholm University, Stockholm, Sweden

 

This composite image shows the gravitationally lensed type Ia supernova iPTF16geu, as seen with different telescopes. The background image shows a wide-field view of the night sky as seen with the Palomar Observatory located on Palomar Mountain, California. The leftmost image shows observations made with the Sloan Digital Sky Survey (SDSS). The central image was taken by the NASA/ESA Hubble Space Telescope and shows the lensing galaxy SDSS J210415.89-062024.7. The rightmost image was also taken with Hubble and depicts the four lensed images of the supernova explosion, surrounding the lensing galaxy. Credit: ESA/Hubble, NASA, Sloan Digital Sky Survey, Palomar Observatory/California Institute of Technology

 

An international team, led by astronomers from the Stockholm University, Sweden, has discovered a distant type Ia supernova, called iPTF16geu [1] — it took the light 4.3 billion years to travel to Earth [2]. The light from this particular supernova was bent and magnified by the effect of gravitational lensing so that it was split into four separate images on the sky [3]. The four images lie on a circle with a radius of only about 3000 light-years around the lensing foreground galaxy, making it one of the smallest extragalactic gravitational lenses discovered so far. Its appearance resembles the famous Refsdal supernova, which astronomers detected in 2015 (heic1525). Refsdal, however, was a core-collapse supernova.

Type Ia supernovae always have the same intrinsic brightness, so by measuring how bright they appear astronomers can determine how far away they are. They are therefore known as standard candles. These supernovae have been used for decades to measure distances across the Universe, and were also used to discover its accelerated expansion and infer the existence of dark energy. Now the supernova iPTF16geu allows scientists to explore new territory, testing the theories of the warping of spacetime on smaller extragalactic scales than ever before.

 

Read the rest of this entry »

Star Explosion is Lopsided, Finds NASA’s NuSTAR

Posted on

 

The still unraveling remains of supernova 1987A are shown here in this image taken by NASA’s Hubble Space Telescope. The bright ring consists of material ejected from the dying star before it detonated. The ring is being lit up by the explosion’s shock wave.Image credit: ESA/Hubble & NASA

 

NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, has found evidence that a massive star exploded in a lopsided fashion, sending ejected material flying in one direction and the core of the star in the other.

The findings offer the best proof yet that star explosions of this type, called Type II or core-collapse supernovae, are inherently asymmetrical, a phenomenon that had been difficult to prove before now.

“Stars are spherical objects, but apparently the process by which they die causes their cores to be turbulent, boiling and sloshing around in the seconds before their demise,” said Steve Boggs of the University of California, Berkeley, lead author of a new study on the findings, appearing in the May 8 issue of Science. “We are learning that this sloshing leads to asymmetrical explosions.”

The supernova remnant in the study, called 1987A, is 166,000 light-years away. Light from the blast that created the remnant lit up skies above Earth in 1987. While other telescopes had found hints that this explosion was not spherical, NuSTAR found the “smoking gun” in the form of a radioisotope called titanium-44. 

“Titanium is produced in the very heart of the explosion, so it traces the shape of the engine driving the disassembly of the star,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena. “By looking at the shift of the energy of the X-rays coming from titanium, the NuSTAR data revealed that, surprisingly, most of the material is moving away from us.” 

The plot of data from NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR (right), amounts to a “smoking gun” of evidence in the mystery of how massive stars explode. Image credit: NASA/JPL-Caltech/UC Berkeley


Last year, NuSTAR created detailed titanium-44 maps of another supernova remnant, called Cassiopeia A, also finding evidence of an asymmetrical explosion, though not to as great an extent as in 1987A. Together, these results suggest that lopsidedness is at the very root of core-collapse supernova.

When supernova 1987A first lit up our skies decades ago, telescopes around the world had a unique opportunity to watch the event unfold and evolve. Outer, ejected materials lit up first, followed by the innermost materials powered by radioactive isotopes, such as cobalt-56, which decayed into iron-56. In 2012, the European Space Agency’s Integral satellite detected titanium-44 in 1987A. Titanium-44 continues to blaze in the supernova remnant due to its long lifetime of 85 years.
“In some ways, it is as if 1987A is still exploding in front of our eyes,” said Boggs.

NuSTAR brought a new tool to the study of 1987A. Thanks to the observatory’s sharp high-energy X-ray vision, it has made the most precise measurements of titanium-44 yet. This radioactive material is produced at the core of a supernova, so it provides astronomers with a direct probe into the mechanisms of a detonating star.

The NuSTAR spectral data shows that titanium-44 is moving away from us with a velocity of 1.6 million mph (2.6 million kilometers per hour). That indicates ejected material flung outward in one direction, while the compact core of the supernova, called a neutron star, seems to have kicked off in the opposite direction. 

“These explosions are driven by the formation of a compact object, the remaining core of the star, and this seems to be connected to the core blasting one direction, and the ejected material, the other,” said Boggs.

Previous observations have hinted at the lopsided nature of supernova blasts, but it was impossible to confirm. Telescopes like NASA’s Chandra X-ray Observatory, which sees lower-energy X-rays than NuSTAR, had spotted iron that had been heated in the 1987A blast, but it was not clear if the iron was generated in the explosion or just happened to have been in the vicinity.
“Radioactive titanium-44 glows in the X-rays no matter what and is only produced in the explosion,” said Brian Grefenstette, a co-author of the study at Caltech. “This means that we don’t have to worry about how the environment influenced the observations. We are able to directly observe the material ejected in the explosion.”

Future studies by NuSTAR and other telescopes should further illuminate the warped nature of supernovae. Is 1987A particularly askew, or in line with other objects in its class? A decades-old mystery continues to unravel before our eyes.

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA’s Jet Propulsion Laboratory, also in Pasadena, for NASA’s Science Mission Directorate in Washington.

For more information, visit: http://www.nasa.gov/nustar.

NASA’s SOFIA Finds Missing Link Between Supernovae and Planet Formation

Posted on




Using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), an international scientific team discovered that supernovae are capable of producing a substantial amount of the material from which planets like Earth can form.

These findings are published in the March 19 online issue of Science magazine.

“Our observations reveal a particular cloud produced by a supernova explosion 10,000 years ago contains enough dust to make 7,000 Earths,” said Ryan Lau of Cornell University in Ithaca, New York.

The research team, headed by Lau, used SOFIA’s airborne telescope and the Faint Object InfraRed Camera for the SOFIA Telescope, FORCAST, to take detailed infrared images of an interstellar dust cloud known as Supernova Remnant Sagittarius A East, or SNR Sgr A East.

Supernova remnant dust as seen by SOFIA

Supernova remnant dust detected by SOFIA (yellow) survives away from the hottest X-ray gas (purple). The red ellipse outlines the supernova shock wave. The inset shows a magnified image of the dust (orange) and gas emission (cyan).

Image Credit: NASA/CXO/Lau et al

The team used SOFIA data to estimate the total mass of dust in the cloud from the intensity of its emission. The investigation required measurements at long infrared wavelengths in order to peer through intervening interstellar clouds and detect the radiation emitted by the supernova dust.

Astronomers already had evidence that a supernova’s outward-moving shock wave can produce significant amounts of dust. Until now, a key question was whether the new soot- and sand-like dust particles would survive the subsequent inward “rebound” shock wave generated when the first, outward-moving shock wave collides with surrounding interstellar gas and dust.

“The dust survived the later onslaught of shock waves from the supernova explosion, and is now flowing into the interstellar medium where it can become part of the ‘seed material’ for new stars and planets,” Lau explained.

These results also reveal the possibility that the vast amount of dust observed in distant young galaxies may have been made by supernova explosions of early massive stars, as no other known mechanism could have produced nearly as much dust.

“This discovery is a special feather in the cap for SOFIA, demonstrating how observations made within our own Milky Way galaxy can bear directly on our understanding of the evolution of galaxies billions of light years away,” said Pamela Marcum, a SOFIA project scientist at Ames Research Center in Moffett Field, California.

SOFIA is a heavily modified Boeing 747 Special Performance jetliner that carries a telescope with an effective diameter of 100 inches (2.5 meters) at altitudes of 39,000 to 45,000 feet (12 to 14 km). SOFIA is a joint project of NASA and the German Aerospace Center. The aircraft observatory is based at NASA’s Armstrong Flight Research Center facility in Palmdale, California. The agency’s Ames Research Center in Moffett Field, California, is home to the SOFIA Science Center, which is managed by NASA in cooperation with the Universities Space Research Association in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart.

For more information about SOFIA, visit:

http://www.nasa.gov/sofia

or

http://www.dlr.de/en/sofia

For information about SOFIA’s science mission and scientific instruments, visit:

http://www.sofia.usra.edu

or

http://www.dsi.uni-stuttgart.de/index.en.html

-end-